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1 The AMS algorithm

The following is the algorithm by Alon, Matias, Szegedy in 1996, to estimate
the number of distinct elements.

1. Choose a random hash function h : {1,2,...,m} — {1,2,...,m3} from
a pairwise independent hash family.

2. Initialize z = 0.

3. For each item z of the stream, update z as z = Max(zeroes(h(x)), z),
where zeroes(y) denotes the number of trailing zeroes of y in the binary
representation

4. Output 27 for ¢ = 1/2.

Analysis of space complexity: The hash function is of the form h(z) =
ax + b, where a,b € O(m?), thus the space needed to store the pair (a,b)
is O(logm). Clearly the space needed to store the value of z and the final
output are also in O(logm); thus the total space used is O(logm).

2 Analysis of correctness

2.1 Preserving distinctness

Let d denote the number of distinct elements in the stream. We first show
that with probability at least 1 — 1/2m, there are no collisions by the hash
function, so that the number of distinct hashed values is also d.

The probability that h(z) = h(y) for two distinct elements z,y is equal to
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— since h is from a pairwise independent family. The number of pairs is
m



(ZL) < m?/2, thus the probability that some pair collides, is by the union
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From now on, we condition on the event that the hashed values are all dis-
tinct.

2.2 Approximation and error guarantees

We now prove that the estimate is an approximation (although not a very
good one).

Proposition 1 Pr(2°7¢ > 3d) < 0.472 and Pr(2*° < d/3) < 0.472.
Proof of Proposition 1 We first show the following claim.

Claim 1
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We first prove the proposition assuming the claim. We have:

3d 3d 2¢
Pr(2°%¢ > 3d) = Pr(2° > E) = Pr(2* > 5) < 3
where we used Claim 1 for the inequality.
We have:
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Pr(2°7¢ < d/3) = Pr(2°7° < 2d/3) = Pr(2* <

where we used Claim 1 for the inequality.
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Finally, substituting ¢ = 1/2, we obtain the probability bounds to be 5 <
0.472.
We now prove Claim 1. Let L(r) denote the number of r-length trailing

d
zeroes in the set {h(z)|z is in the stream}. Then we have E[L(r)] = o



Note that the event 2% > 2" is equivalent to z > r, which is equivalent to
L(r) > 1. Thus we obtain the first part of the claim from Markov’s inequality.

For the second part, we note that 2 < 27 is equivalent to z < r, which is
equivalent to L(r) = 0. Now, by applying Proposition 2 (see last section),
we obtain the second part of the claim.

This completes the proof of the proposition. i

2.3 Reducing the error

Since the two probabilities of error (exceeding 3d and being less than d/3)
are each less than 1/2; they may be reduced by the median-of-means method

1
each to less than ¢/2, by using O (log(g)) copies of z in parallel. The total

1
error would then be less than § and the total space used is O(log(g) logm).

We note however that the approximation guarantee remains unchanged, and
is not an arbitarily-close approximation.

3 Chebyshev’s Inequality: A useful special case

The following proposition follows from Chebyshev’s inequality and the fact
that if X is a sum of 0/1 random variables, then Var|X| < E[X].

Proposition 2 If X is a sum of pairwise independent random variables tak-
ing values in {0, 1}, with expectation , then:
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Pr(|X — u| > ep) < ——.
r(|X —pl > ep) < =

In particular, Pr[X = 0] <
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