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1 The BJKST algorithm

The following is the algorithm by Bar-Yossef, Jayram, Kumar, Sivakumar

and Trevisan, in 2002, to estimate the number of distinct elements.

1. Choose a random hash function h : {1, 2, . . . ,m} → {1, 2, . . . ,M = m3}
from a pairwise independent hash family.

2. Maintain and update the k smallest elements of the hashed values of

the stream seen so far.

3. Let zk be the kth smallest element. Output
k(M + 1)

zk
as the estimate.

The intuition behind this algorithm is the following: If we pick d random

elements independently in [0,M ], and zk is the kth smallest element, then

E[zk] =
kM

d+ 1
. Thus,

kM

z
should be a good estimate for d. For technical

reasons, seen in the analysis, there is a small modi�cation in the value output.

We have replaced the set [0,M ] by the discrete set {1, 2, . . . ,M}, and instead

of complete independence, we have only pairwise independence. However,

we'll still be able to prove that the estimate is good.

2 Analysis of the BJKST algorithm

The space used by the algorithm is O(k logm). We will choose k =
96

ε2
so

that the space used is O(
1

ε2
logm).

We now argue about the approximation and error gurantee. Let M = m3.
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Claim 1 We have:

Pr

(
|k(M + 1)

zk
− d| > εd

)
≤ 1

3
.

Proof of Claim: The event
k(M + 1)

zk
> d+ εd is equivalent to:

zk <
k(M + 1)

(1 + ε)d
, that is: zk <

k(M + 1)

d
(1 − ε

1 + ε
), which by Corollary 2,

has probability at most
8(1 + ε)2

ε2k
≤ 32

ε2k
. Substituting for k and noting that

the bound is for the total deviation of zk, we get the desired upper bound of
1

3
.

Thus, with probability at least 2/3, the algorithm returns an ε-approximation.

The success probability can be boosted in the standard way.

3 The kth smallest element

Proposition 1 Let X1, X2, . . . , Xd be uniformly random elements of [0,M ],
that are pairwise independent Let Y1, Y2, . . . , Yd be the elements in sorted

order. Then, for 0 ≤ ε ≤ 1, we have:

Pr

(
|Yk −

kM

d
| > ε

kM

d

)
<

2

ε2k
.

We prove the proposition in the form of the following two claims.

Claim 2

Pr

(
Yk < (1− ε)kM

d

)
<

(1− ε)
ε2k

.

Claim 3

Pr

(
Yk > (1 + ε)

kM

d

)
<

(1 + ε)

ε2k
.

Proof of Claim 1: Let Zi = 1 if Xi < (1 − ε)kM
d

and Zi = 0 otherwise.

Let Z = Z1+ . . .+Zd. We have E[Zi] =
(1− ε)k

d
and hence E[Z] = (1−ε)k.
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Thus, by Proposition 3,

Pr[Z ≥ k] ≤ Pr(|Z − E[Z]| ≥ εk) ≤ (
ε

1− ε
)−2(1− ε)−1k−1.

Proof of Claim 2: Let Zi = 1 if Xi > (1 + ε)
kM

d
and Zi = 0 otherwise.

Let Z = Z1+ . . .+Zd. We have E[Zi] =
(1 + ε)k

d
and hence E[Z] = (1+ε)k.

Thus, by Proposition 3,

Pr[Z ≤ k] ≤ Pr(|Z − E[Z]| ≥ εk) ≤ (
ε

1 + ε
)−2(1 + ε)−1k−1.

This completes the proofs of the two claims, and hence of Proposition 1.

Note that in proposition 1, we considered the uniform distribution on the

real interval [1,M ]. We can however use the above result to obtain a similar

one for the discrete set {1, . . . ,M}.

Corollary 2 Let X1, X2, . . . , Xd be uniformly random elements of {1, . . . ,M},
that are pairwise independent, with M ≥ d. Let Y1, Y2, . . . , Yd be the elements

in sorted order, and let ε ∈ [0, 1]. Then

Pr

(
|Yk −

k(M + 1)

d
| > ε

k(M + 1)

d

)
<

8

ε2k
.

To obtain the corollary, we can model the discrete variables as bXc, where
X is u.a.r. from [1,M + 1]. The di�erence in E[Zi] between the two cases is

at most
1

M + 1
, and we can argue that E[Z] in Claim 2 is at least (1 +

ε

2
)k

and at most (1 +
3ε

2
)k. These approximations should comfortably give the

bound in the corollary.

4 Chebyshev's Inequality: A useful special case

We restate the following inequality, also seen in the analysis of the AMS

algorithm.
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Proposition 3 If X is a sum of pairwise independent random variables tak-

ing values in {0, 1}, with expectation µ, then:

Pr(|X − µ| ≥ εµ) ≤ 1

ε2µ
.

In particular, Pr[X = 0] ≤ 1

µ
.


