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Lecture 14:
The BIKST Algorithm for Counting Distinct Elements
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1 The BJKST algorithm

The following is the algorithm by Bar-Yossef, Jayram, Kumar, Sivakumar
and Trevisan, in 2002, to estimate the number of distinct elements.

1. Choose a random hash function i : {1,2,...,m} — {1,2,..., M = m3}
from a pairwise independent hash family.

2. Maintain and update the k smallest elements of the hashed values of
the stream seen so far.
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3. Let z; be the kth smallest element. Output as the estimate.

The intuition behind this algorithm is the following: If we pick d random

elements independently in [0, M], and z is the kth smallest element, then
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E[z] = ——. Thus, — should be a good estimate for d. For technical
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reasons, seen in the analysis, there is a small modification in the value output.

We have replaced the set [0, M] by the discrete set {1,2,..., M}, and instead
of complete independence, we have only pairwise independence. However,
we’ll still be able to prove that the estimate is good.

2 Analysis of the BJKST algorithm

The space used by the algorithm is O(klogm). We will choose k = i—g SO
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that the space used is O(—; logm).
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We now argue about the approximation and error gurantee. Let M = m3.



Claim 1 We have:
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has probability at most (T? < TR Substituting for k£ and noting that
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the bound is for the total deviation of z;, we get the desired upper bound of
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Thus, with probability at least 2/3, the algorithm returns an e-approximation.
The success probability can be boosted in the standard way.

Proof of Claim: The event > d + ed is equivalent to:

2z < , that is: 2, < ), which by Corollary 2,

3 The kth smallest element

Proposition 1 Let X, Xo, ..., Xy be uniformly random elements of [0, M],
that are pairwise independent Let Y1,Ys,...,Y,; be the elements in sorted
order. Then, for 0 <e <1, we have:
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We prove the proposition in the form of the following two claims.

Pr (Yk <(1- 5)k24) < (162_;).

Claim 2

Claim 3
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Proof of Claim 1: Let Z; = 1if X; < (1 — 5)7 and Z; = 0 otherwise.
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Let Z = Zy1+...4+Z4. We have E[Z;] = % and hence F[Z] = (1—¢)k.



Thus, by Proposition 3,
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Proof of Claim 2: Tet Z; = 1if X; > (1 + 8)7 and Z;, = 0 otherwise.
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Let Z = Z1+...+Zy. We have E[Z;] = d+e)k and hence E[Z] = (1+¢)k.
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Thus, by Proposition 3,
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This completes the proofs of the two claims, and hence of Proposition 1.

Note that in proposition 1, we considered the uniform distribution on the
real interval [1, M]. We can however use the above result to obtain a similar
one for the discrete set {1,..., M}.

Corollary 2 Let X1, Xs, ..., Xy be uniformly random elements of {1,..., M},
that are pairwise independent, with M > d. Let Y1,Y5, ..., Y, be the elements
in sorted order, and let € € [0,1]. Then
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To obtain the corollary, we can model the discrete variables as | X |, where
X is u.a.r. from [1, M + 1]. The difference in E[Z;] between the two cases is

Vil and we can argue that F[Z] in Claim 2 is at least (1 + g)k:
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and at most (1 + ?E)k: These approximations should comfortably give the

at most

bound in the corollary.

4 Chebyshev’s Inequality: A useful special case

We restate the following inequality, also seen in the analysis of the AMS
algorithm.



Proposition 3 If X is a sum of pairwise independent random variables tak-
ing values in {0, 1}, with expectation p, then:
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In particular, Pr[X = 0] <
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