Lecture 14:

The BIKST Algorithm for Counting Distinct Elements
Lecturer: N.R.Aravind
Scribe: N.R.Aravind

1 The BJKST algorithm

The following is the algorithm by Bar-Yossef, Jayram, Kumar, Sivakumar and Trevisan, in 2002, to estimate the number of distinct elements.

1. Choose a random hash function $h:\{1,2, \ldots, m\} \rightarrow\left\{1,2, \ldots, M=m^{3}\right\}$ from a pairwise independent hash family.
2. Maintain and update the k smallest elements of the hashed values of the stream seen so far.
3. Let z_{k} be the k th smallest element. Output $\frac{k(M+1)}{z_{k}}$ as the estimate.

The intuition behind this algorithm is the following: If we pick d random elements independently in $[0, M]$, and z_{k} is the k th smallest element, then $E\left[z_{k}\right]=\frac{k M}{d+1}$. Thus, $\frac{k M}{z}$ should be a good estimate for d. For technical reasons, seen in the analysis, there is a small modification in the value output. We have replaced the set $[0, M]$ by the discrete set $\{1,2, \ldots, M\}$, and instead of complete independence, we have only pairwise independence. However, we'll still be able to prove that the estimate is good.

2 Analysis of the BJKST algorithm

The space used by the algorithm is $O(k \log m)$. We will choose $k=\frac{96}{\varepsilon^{2}}$ so that the space used is $O\left(\frac{1}{\varepsilon^{2}} \log m\right)$.

We now argue about the approximation and error gurantee. Let $M=m^{3}$.

Claim 1 We have:

$$
\operatorname{Pr}\left(\left|\frac{k(M+1)}{z_{k}}-d\right|>\varepsilon d\right) \leq \frac{1}{3} .
$$

Proof of Claim: The event $\frac{k(M+1)}{z_{k}}>d+\varepsilon d$ is equivalent to:
$z_{k}<\frac{k(M+1)}{(1+\varepsilon) d}$, that is: $z_{k}<\frac{k(M+1)}{d}\left(1-\frac{\varepsilon}{1+\varepsilon}\right)$, which by Corollary 2, has probability at most $\frac{8(1+\varepsilon)^{2}}{\varepsilon^{2} k} \leq \frac{32}{\varepsilon^{2} k}$. Substituting for k and noting that the bound is for the total deviation of z_{k}, we get the desired upper bound of $\frac{1}{3}$.
Thus, with probability at least $2 / 3$, the algorithm returns an ε-approximation. The success probability can be boosted in the standard way.

3 The k th smallest element

Proposition 1 Let $X_{1}, X_{2}, \ldots, X_{d}$ be uniformly random elements of $[0, M]$, that are pairwise independent Let $Y_{1}, Y_{2}, \ldots, Y_{d}$ be the elements in sorted order. Then, for $0 \leq \varepsilon \leq 1$, we have:

$$
\operatorname{Pr}\left(\left|Y_{k}-\frac{k M}{d}\right|>\varepsilon \frac{k M}{d}\right)<\frac{2}{\varepsilon^{2} k} .
$$

We prove the proposition in the form of the following two claims.

Claim 2

$$
\operatorname{Pr}\left(Y_{k}<(1-\varepsilon) \frac{k M}{d}\right)<\frac{(1-\varepsilon)}{\varepsilon^{2} k} .
$$

Claim 3

$$
\operatorname{Pr}\left(Y_{k}>(1+\varepsilon) \frac{k M}{d}\right)<\frac{(1+\varepsilon)}{\varepsilon^{2} k} .
$$

Proof of Claim 1: Let $Z_{i}=1$ if $X_{i}<(1-\varepsilon) \frac{k M}{d}$ and $Z_{i}=0$ otherwise. Let $Z=Z_{1}+\ldots+Z_{d}$. We have $E\left[Z_{i}\right]=\frac{(1-\varepsilon) k}{d}$ and hence $E[Z]=(1-\varepsilon) k$.

Thus, by Proposition 3,

$$
\operatorname{Pr}[Z \geq k] \leq \operatorname{Pr}(|Z-E[Z]| \geq \varepsilon k) \leq\left(\frac{\varepsilon}{1-\varepsilon}\right)^{-2}(1-\varepsilon)^{-1} k^{-1}
$$

Proof of Claim 2: Let $Z_{i}=1$ if $X_{i}>(1+\varepsilon) \frac{k M}{d}$ and $Z_{i}=0$ otherwise.
Let $Z=Z_{1}+\ldots+Z_{d}$. We have $E\left[Z_{i}\right]=\frac{(1+\varepsilon) k}{d}$ and hence $E[Z]=(1+\varepsilon) k$.
Thus, by Proposition 3,

$$
\operatorname{Pr}[Z \leq k] \leq \operatorname{Pr}(|Z-E[Z]| \geq \varepsilon k) \leq\left(\frac{\varepsilon}{1+\varepsilon}\right)^{-2}(1+\varepsilon)^{-1} k^{-1}
$$

This completes the proofs of the two claims, and hence of Proposition 1.
Note that in proposition 1, we considered the uniform distribution on the real interval $[1, M]$. We can however use the above result to obtain a similar one for the discrete set $\{1, \ldots, M\}$.

Corollary 2 Let $X_{1}, X_{2}, \ldots, X_{d}$ be uniformly random elements of $\{1, \ldots, M\}$, that are pairwise independent, with $M \geq d$. Let $Y_{1}, Y_{2}, \ldots, Y_{d}$ be the elements in sorted order, and let $\varepsilon \in[0,1]$. Then

$$
\operatorname{Pr}\left(\left|Y_{k}-\frac{k(M+1)}{d}\right|>\varepsilon \frac{k(M+1)}{d}\right)<\frac{8}{\varepsilon^{2} k} .
$$

To obtain the corollary, we can model the discrete variables as $\lfloor X\rfloor$, where X is u.a.r. from $[1, M+1]$. The difference in $E\left[Z_{i}\right]$ between the two cases is at most $\frac{1}{M+1}$, and we can argue that $E[Z]$ in Claim 2 is at least $\left(1+\frac{\varepsilon}{2}\right) k$ and at most $\left(1+\frac{3 \varepsilon}{2}\right) k$. These approximations should comfortably give the bound in the corollary.

4 Chebyshev's Inequality: A useful special case

We restate the following inequality, also seen in the analysis of the AMS algorithm.

Proposition 3 If X is a sum of pairwise independent random variables taking values in $\{0,1\}$, with expectation μ, then:

$$
\operatorname{Pr}(|X-\mu| \geq \varepsilon \mu) \leq \frac{1}{\varepsilon^{2} \mu}
$$

In particular, $\operatorname{Pr}[X=0] \leq \frac{1}{\mu}$.

