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Outline of the Lecture

What is code optimization? (in part 1)
Illustrations of code optimizations (in part 1)
Examples of data-flow analysis
Fundamentals of control-flow analysis
Algorithms for two machine-independent optimizations
SSA form and optimizations
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Available Expression Computation

Sets of expressions constitute the domain of data-flow
values
Forward flow problem
Confluence operator is ∩
An expression x + y is available at a point p, if every path
(not necessarily cycle-free) from the initial node to p
evaluates x + y , and after the last such evaluation, prior to
reaching p, there are no subsequent assignments to x or y
A block kills x + y , if it assigns (or may assign) to x or y
and does not subsequently recompute x + y .
A block generates x + y , if it definitely evaluates x + y , and
does not subsequently redefine x or y
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Available Expression Computation - EGEN and EKILL
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Available Expression Computation - DF Equations (1)

The data-flow equations

IN[B] =
⋂

P is a predecessor of B

OUT [P], B not initial

OUT [B] = e_gen[B]
⋃

(IN[B]− e_kill[B])

IN[B1] = φ

IN[B] = U, for all B 6= B1 (initialization only)

B1 is the intial or entry block and is special because
nothing is available when the program begins execution
IN[B1] is always φ
U is the universal set of all expressions
Initializing IN[B] to φ for all B 6= B1, is restrictive
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Available Expression Computation - DF Equations (2)
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Available Expression Computation - An Example
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Available Expression Computation - An Example (2)
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An Iterative Algorithm for Computing Available
Expressions

for each block B 6= B1 do {OUT [B] = U − e_kill[B]; }
/* You could also do IN[B] = U;*/
/* In such a case, you must also interchange the order of */
/* IN[B] and OUT [B] equations below */
change = true;
while change do { change = false;

for each block B 6= B1 do {

IN[B] =
⋂

P a predecessor of B

OUT [P];

oldout = OUT [B];

OUT [B] = e_gen[B]
⋃

(IN[B]− e_kill[B]);

if (OUT [B] 6= oldout) change = true;
}

}
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Live Variable Analysis

The variable x is live at the point p, if the value of x at p
could be used along some path in the flow graph, starting
at p; otherwise, x is dead at p
Sets of variables constitute the domain of data-flow values
Backward flow problem, with confluence operator

⋃
IN[B] is the set of variables live at the beginning of B
OUT [B] is the set of variables live just after B
DEF [B] is the set of variables definitely assigned values in
B, prior to any use of that variable in B
USE [B] is the set of variables whose values may be used
in B prior to any definition of the variable

OUT [B] =
⋃

S is a successor of B

IN[S]

IN[B] = USE [B]
⋃

(OUT [B]− DEF [B])

IN[B] = φ, for all B (initialization only)
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Live Variable Analysis: An Example - Pass 1
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Live Variable Analysis: An Example - Pass 2.1
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Live Variable Analysis: An Example - Pass 2.2
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Live Variable Analysis: An Example - Pass 2.3
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Live Variable Analysis: An Example - Pass 2.4
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Live Variable Analysis: An Example - Final pass
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Foundations of Data-flow Analysis

Basic questions to be answered
1 In which situations is the iterative DFA algorithm correct?
2 How precise is the solution produced by it?
3 Will the algorithm converge?
4 What is the meaning of a “solution”?

The above questions can be answered accurately by a
DFA framework
Further, reusable components of the DFA algorithm can be
identified once a framework is defined
A DFA framework (D,V ,∧,F ) consists of

D : A direction of the dataflow, either forward or backward
V : A domain of values
∧ : A meet operator; (V ,∧) form a semi-lattice
F : A family of transfer functions, V −→ V

F includes constant transfer functions for the
ENTRY/EXIT nodes as well
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Semi-Lattice

A semi-lattice is a set V and a binary operator ∧, such that
the following properties hold

1 V is closed under ∧
2 ∧ is idempotent (x ∧ x = x), commutative (x ∧ y = y ∧ x),

and associative (x ∧ (y ∧ z) = (x ∧ y) ∧ z)
3 It has a top element, >, such that ∀ x ∈ V , > ∧ x = x
4 It may have a bottom element, ⊥, such that
∀x ∈ V , ⊥ ∧ x = ⊥

The operator ∧ defines a partial order ≤ on V , such that
x ≤ y iff x ∧ y = x
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Semi-Lattice of Reaching Definitions

3 definitions, {d1,d2,d3}
V is the set of all subsets of {d1,d2,d3}
∧ is ∪
The diagram (next slide) shows the partial order relation
induced by ∧ (i.e., ∪)
Partial order relation is ⊇
An arrow, y → x indicates x ⊇ y (x ≤ y )
Each set in the diagram is a data-flow value
Transitivity is implied in the diagram (a→ b & b → c
imples a→ c)
An ascending chain: (x1 < x2 < ... < xn)

Height of a semi-lattice: largest number of ‘<’ relations in
any ascending chain
Semi-lattices in our DF frameworks will be of finite height
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Lattice Diagram of Reaching Definitions

y → x indicates x ⊇ y (x ≤ y )
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Transfer Functions

F : V → V has the following properties
1 F has an identity function, I(x) = x , for all x ∈ V
2 F is closed under composition, i.e., for f ,g ∈ F , f .g ∈ F

Example: Again considering the R-D problem
Assume that each quadruple is in a separate basic block
OUT [B] = GEN[B] ∪ (IN[B]− KILL[B])

In its general form, this becomes f (x) = G ∪ (x − K )

F consists of such functions f , one for each basic block
Identity function exists here (when both G and K (GEN
and KILL) are empty)
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Reaching Definitions Framework - Example
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Monotone and Distributive Frameworks

A DF framework (D,F ,V ,∧) is monotone, if
∀x , y ∈ V , f ∈ F , x ≤ y ⇒ f (x) ≤ f (y), OR
f (x ∧ y) ≤ f (x) ∧ f (y)
The reaching definitions framework is monotone
A DF framework is distributive, if
∀x , y ∈ V , f ∈ F , f (x ∧ y) = f (x) ∧ f (y)
Distributivity⇒ monotonicity, but not vice-versa
The reaching definitions lattice is distributive

Y.N. Srikant Theoretical Foundations of DFA



Iterative Algorithm for DFA (forward flow)

{OUT [B1] = vinit ;
for each block B 6= B1 do OUT [B] = >;
while (changes to any OUT occur) do

for each block B 6= B1 do {

IN[B] =
∧

P a predecessor of B

OUT [P];

OUT [B] = fB(IN[B]);

}
}
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Reaching Definitions Framework - Example contd.
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