
Introduction to
Machine-Independent Optimizations - 3

Data-Flow Analysis

Y.N. Srikant

Department of Computer Science and Automation
Indian Institute of Science

Bangalore 560 012

NPTEL Course on Principles of Compiler Design

Y.N. Srikant Data-Flow Analysis



Outline of the Lecture

What is code optimization? (in part 1)
Illustrations of code optimizations (in part 1)
Examples of data-flow analysis
Fundamentals of control-flow analysis
Algorithms for two machine-independent optimizations
SSA form and optimizations

Y.N. Srikant Data-Flow Analysis



Available Expression Computation

Sets of expressions constitute the domain of data-flow
values
Forward flow problem
Confluence operator is ∩
An expression x + y is available at a point p, if every path
(not necessarily cycle-free) from the initial node to p
evaluates x + y , and after the last such evaluation, prior to
reaching p, there are no subsequent assignments to x or y
A block kills x + y , if it assigns (or may assign) to x or y
and does not subsequently recompute x + y .
A block generates x + y , if it definitely evaluates x + y , and
does not subsequently redefine x or y

Y.N. Srikant Data-Flow Analysis



Available Expression Computation - EGEN and EKILL

Y.N. Srikant Data-Flow Analysis



Available Expression Computation - DF Equations (1)

The data-flow equations

IN[B] =
⋂

P is a predecessor of B

OUT [P], B not initial

OUT [B] = e_gen[B]
⋃

(IN[B]− e_kill[B])

IN[B1] = φ

IN[B] = U, for all B 6= B1 (initialization only)

B1 is the intial or entry block and is special because
nothing is available when the program begins execution
IN[B1] is always φ
U is the universal set of all expressions
Initializing IN[B] to φ for all B 6= B1, is restrictive

Y.N. Srikant Data-Flow Analysis



Available Expression Computation - DF Equations (2)

Y.N. Srikant Data-Flow Analysis



Available Expression Computation - An Example

Y.N. Srikant Data-Flow Analysis



Available Expression Computation - An Example (2)

Y.N. Srikant Data-Flow Analysis



An Iterative Algorithm for Computing Available
Expressions

for each block B 6= B1 do {OUT [B] = U − e_kill[B]; }
/* You could also do IN[B] = U;*/
/* In such a case, you must also interchange the order of */
/* IN[B] and OUT [B] equations below */
change = true;
while change do { change = false;

for each block B 6= B1 do {

IN[B] =
⋂

P a predecessor of B

OUT [P];

oldout = OUT [B];

OUT [B] = e_gen[B]
⋃

(IN[B]− e_kill[B]);

if (OUT [B] 6= oldout) change = true;
}

}
Y.N. Srikant Data-Flow Analysis



Live Variable Analysis

The variable x is live at the point p, if the value of x at p
could be used along some path in the flow graph, starting
at p; otherwise, x is dead at p
Sets of variables constitute the domain of data-flow values
Backward flow problem, with confluence operator

⋃
IN[B] is the set of variables live at the beginning of B
OUT [B] is the set of variables live just after B
DEF [B] is the set of variables definitely assigned values in
B, prior to any use of that variable in B
USE [B] is the set of variables whose values may be used
in B prior to any definition of the variable

OUT [B] =
⋃

S is a successor of B

IN[S]

IN[B] = USE [B]
⋃

(OUT [B]− DEF [B])

IN[B] = φ, for all B (initialization only)

Y.N. Srikant Data-Flow Analysis



Live Variable Analysis: An Example - Pass 1

Y.N. Srikant Data-Flow Analysis



Live Variable Analysis: An Example - Pass 2.1

Y.N. Srikant Data-Flow Analysis



Live Variable Analysis: An Example - Pass 2.2

Y.N. Srikant Data-Flow Analysis



Live Variable Analysis: An Example - Pass 2.3

Y.N. Srikant Data-Flow Analysis



Live Variable Analysis: An Example - Pass 2.4

Y.N. Srikant Data-Flow Analysis



Live Variable Analysis: An Example - Final pass

Y.N. Srikant Data-Flow Analysis



Data-flow Analysis: Theoretical Foundations

Y.N. Srikant

Department of Computer Science and Automation
Indian Institute of Science

Bangalore 560 012

NPTEL Course on Principles of Compiler Design

Y.N. Srikant Theoretical Foundations of DFA



Foundations of Data-flow Analysis

Basic questions to be answered
1 In which situations is the iterative DFA algorithm correct?
2 How precise is the solution produced by it?
3 Will the algorithm converge?
4 What is the meaning of a “solution”?

The above questions can be answered accurately by a
DFA framework
Further, reusable components of the DFA algorithm can be
identified once a framework is defined
A DFA framework (D,V ,∧,F ) consists of

D : A direction of the dataflow, either forward or backward
V : A domain of values
∧ : A meet operator; (V ,∧) form a semi-lattice
F : A family of transfer functions, V −→ V

F includes constant transfer functions for the
ENTRY/EXIT nodes as well

Y.N. Srikant Theoretical Foundations of DFA



Semi-Lattice

A semi-lattice is a set V and a binary operator ∧, such that
the following properties hold

1 V is closed under ∧
2 ∧ is idempotent (x ∧ x = x), commutative (x ∧ y = y ∧ x),

and associative (x ∧ (y ∧ z) = (x ∧ y) ∧ z)
3 It has a top element, >, such that ∀ x ∈ V , > ∧ x = x
4 It may have a bottom element, ⊥, such that
∀x ∈ V , ⊥ ∧ x = ⊥

The operator ∧ defines a partial order ≤ on V , such that
x ≤ y iff x ∧ y = x

Y.N. Srikant Theoretical Foundations of DFA



Semi-Lattice of Reaching Definitions

3 definitions, {d1,d2,d3}
V is the set of all subsets of {d1,d2,d3}
∧ is ∪
The diagram (next slide) shows the partial order relation
induced by ∧ (i.e., ∪)
Partial order relation is ⊇
An arrow, y → x indicates x ⊇ y (x ≤ y )
Each set in the diagram is a data-flow value
Transitivity is implied in the diagram (a→ b & b → c
imples a→ c)
An ascending chain: (x1 < x2 < ... < xn)

Height of a semi-lattice: largest number of ‘<’ relations in
any ascending chain
Semi-lattices in our DF frameworks will be of finite height

Y.N. Srikant Theoretical Foundations of DFA



Lattice Diagram of Reaching Definitions

y → x indicates x ⊇ y (x ≤ y )

Y.N. Srikant Theoretical Foundations of DFA



Transfer Functions

F : V → V has the following properties
1 F has an identity function, I(x) = x , for all x ∈ V
2 F is closed under composition, i.e., for f ,g ∈ F , f .g ∈ F

Example: Again considering the R-D problem
Assume that each quadruple is in a separate basic block
OUT [B] = GEN[B] ∪ (IN[B]− KILL[B])

In its general form, this becomes f (x) = G ∪ (x − K )

F consists of such functions f , one for each basic block
Identity function exists here (when both G and K (GEN
and KILL) are empty)

Y.N. Srikant Theoretical Foundations of DFA



Reaching Definitions Framework - Example

Y.N. Srikant Theoretical Foundations of DFA



Monotone and Distributive Frameworks

A DF framework (D,F ,V ,∧) is monotone, if
∀x , y ∈ V , f ∈ F , x ≤ y ⇒ f (x) ≤ f (y), OR
f (x ∧ y) ≤ f (x) ∧ f (y)
The reaching definitions framework is monotone
A DF framework is distributive, if
∀x , y ∈ V , f ∈ F , f (x ∧ y) = f (x) ∧ f (y)
Distributivity⇒ monotonicity, but not vice-versa
The reaching definitions lattice is distributive

Y.N. Srikant Theoretical Foundations of DFA



Iterative Algorithm for DFA (forward flow)

{OUT [B1] = vinit ;
for each block B 6= B1 do OUT [B] = >;
while (changes to any OUT occur) do

for each block B 6= B1 do {

IN[B] =
∧

P a predecessor of B

OUT [P];

OUT [B] = fB(IN[B]);

}
}

Y.N. Srikant Theoretical Foundations of DFA



Reaching Definitions Framework - Example contd.

Y.N. Srikant Theoretical Foundations of DFA


