Intermediate Code Generation - Part 1

Y.N. Srikant

Department of Computer Science and Automation
Indian Institute of Science
Bangalore 560 012

NPTEL Course on Principles of Compiler Design

Y.N. Srikant Intermediate Code Generation

Outline of the Lecture

@ Introduction
o Different types of intermediate code
@ Intermediate code generation for various constructs

Y.N. Srikant Intermediate Code Generation

Compiler Overview

characiter stream

optimized
Lexical Analyzer target-machine code
'
token stream Machine-Dependent
1 Code Optimizer

i

Syntax Analyzer target-machine code
i Symbol N
syntax tree Table

1 Code Generator

Semantic Analyzer

t
optimized
intermediate gepresentation

)
annotated syntax tree

‘ Machine-Independent
Intermediate Code Generator Code Optimizer

;]
intermediate representation

Y.N. Srikant Intermediate Code Generation

Compilers and Interpreters

@ Compilers generate machine code, whereas interpreters
interpret intermediate code

@ Interpreters are easier to write and can provide better error
messages (symbol table is still available)

@ Interpreters are at least 5 times slower than machine code
generated by compilers

@ Interpreters also require much more memory than machine
code generated by compilers

@ Examples: Perl, Python, Unix Shell, Java, BASIC, LISP

Y.N. Srikant Intermediate Code Generation

Why Intermediate Code? - 1

4 Source

3 Target
languages

machines

4 front ends +
4x3 optimizers +
4x3 code generators

Y.N. Srikant

4 Source
languages

3 Target
machines

Intermediate
code optimizer

4 front ends +
1 optimizer +
3 code generators

Intermediate Code Generation

Why Intermediate Code? - 2

@ While generating machine code directly from source code
is possible, it entails two problems

e With mlanguages and n target machines, we need to write
m front ends, m x n optimizers, and m x n code generators
e The code optimizer which is one of the largest and
very-difficult-to-write components of a compiler, cannot be
reused
@ By converting source code to an intermediate code, a
machine-independent code optimizer may be written

@ This means just m front ends, n code generators and 1
optimizer

Y.N. Srikant Intermediate Code Generation

Different Types of Intermediate Code

@ Intermediate code must be easy to produce and easy to
translate to machine code
e A sort of universal assembly language
e Should not contain any machine-specific parameters
(registers, addresses, etc.)
@ The type of intermediate code deployed is based on the
application
@ Quadruples, triples, indirect triples, abstract syntax trees
are the classical forms used for machine-independent
optimizations and machine code generation
@ Static Single Assignment form (SSA) is a recent form and
enables more effective optimizations
e Conditional constant propagation and global value
numbering are more effective on SSA
@ Program Dependence Graph (PDQG) is useful in automatic
parallelization, instruction scheduling, and software
pipelining

Y.N. Srikant Intermediate Code Generation

Three-Address Code

Instructions are very simple
Examples:a = b + ¢,x = -y,if a > b goto L1

LHS is the target and the RHS has at most two sources
and one operator

RHS sources can be either variables or constants

Three-address code is a generic form and can be
implemented as quadruples, triples, indirect triples, tree or
DAG

Example: The three-address code for a+b*c-d/ (b*c)
is below

@ t1=Db'c

Q t2 =a+t1

Q t3=b*c

Q t4=d13

Q t5=t2t4

Y.N. Srikant Intermediate Code Generation

Implementations of 3-Address Code

3-address code Quadruples Triples

op arg, arg, | result op | arg, | arg,
1 t1 =b*c * b c t1 0| = b c
2 12 =at1 + a t1 t2 1 + a | (0
3 t3 =b*c b c 13 2| b c
4 t4 =dit3 / d t3 t4 3| d | (2
5 tb =t2-14 - t2 t4 t5 40 - | M| @)

— .

N
/1-\" /l\" /-I-\ (;/I
PN a ,/DAG
b c b c /\

Syntax tree b c

Y.N. Srikant Intermediate Code Generation

Instructions in Three-Address Code - 1

@ Assignment instructions:
a = b biop c,a = uop b,anda = b (copy), where
e biop is any binary arithmetic, logical, or relational operator
e uop is any unary arithmetic (-, shift, conversion) or logical
operator (~)
e Conversion operators are useful for converting integers to
floating point numbers, etc.

© Jump instructions:
goto L (unconditional jump to L),
if t goto L (ittis truethenjumptol),

if a relop b goto L (jumptoLifarelop bis true),
where

o L is the label of the next three-address instruction to be
executed

e tis aboolean variable

@ aand b are either variables or constants

Y.N. Srikant Intermediate Code Generation

Instructions in Three-Address Code - 2

© Functions:
func begin <name> (beginning of the function),
func end (end of a function),
param p (place a value parameter p on stack),
refparam p (place a reference parameter p on stack),
call f, n(call afunction f with n parameters),
return (return from a function),
return a (return from a function with a value a)

© Indexed copy instructions:
a = bl[i] (ais setto contents(contents(b)+contents(i)),
where b is (usually) the base address of an array
ali] = b (i location of array ais set to b)

@ Pointer assignments:
a = &b (ais setto the address of b, i.e., a points to b)
xa = b (contents(contents(a)) is set to contents(b))
a = xb (ais set to contents(contents(b)))

Y.N. Srikant Intermediate Code Generation

Intermediate Code - Example 1

C-Program

int a[l10], b[10],
dot_prod = 0;

for (i=0; i<10; 1i++)

Intermediate code

dot_prod = 0;

i = 0;
Ll: 1f(1i >= 10)goto L2
Tl = addr (a)
T2 = ix4
T3 = T1[T2]
T4 = addr (b)
T5 = ix%4

Y.N. Srikant

dot_prod, 1i;

dot_prod += alil*b[i];

T6 = T4[T5]

T7 = T3%xT6

T8 = dot_prod+T7
dot_prod = T8

T9 = i+1
i =179
goto L1

Intermediate Code Generation

Intermediate Code - Example 2

C-Program

int a[l10], b[10], dot_prod, i; intx al; intx* bl;
dot_prod = 0; al = a; bl = b;
for (i=0; i<10; i++) dot_prod += xal++ x *bl++;

Intermediate code

dot_prod = 0; | bl = T6

al = &a | T7 = T3*xT5

bl = &b | T8 = dot_prod+T7

i =0 | dot_prod = T8
Ll: if(i>=10)goto L2 | T9 = i+1

T3 = *al | i =T9

T4 = al+l | goto L1

al = T4 | L2

T5 = *bl

T6 = bl+1

Y.N. Srikant Intermediate Code Generation

Intermediate Code - Example 3

C-Program (function)

int dot_prod(int x[], int yI[1){
int 4, i; d = 0;
for (i=0; 1<10; i++) d += x[1i]=*y[i];
return d;

}

Intermediate code

func begin dot_prod | T6 = T4[T5]

d = 0; | T7 = T3%xT6

i = 0; | T8 = d+T7
Ll: if(i >= 10)goto L2 | d = T8

Tl = addr (x) | T9 = i+1

T2 = ix%4 | i =T9

T3 = T1[T2] | goto L1

T4 = addr (y) |L2: return d

T5 = ix4 | func end

Y.N. Srikant Intermediate Code Generation

Intermediate Code - Example 3 (contd.)

C-Program (main)
main () {
int p; int a[l10], b[1l0];
p = dot_prod(a,b);
}
Intermediate code
func begin main
refparam a
refparam b
refparam result
call dot_prod, 3
p = result
func end

Y.N. Srikant Intermediate Code Generation

Intermediate Code - Example 4

C-Program (function)

int fact (int n) {
if (n==0) return 1;
else return (nxfact(n-1));

}
Intermediate code

func begin fact | T3 = nxresult
if (n==0) goto L1 | return T3
Tl = n-1 | Ll: return 1
param T1 | func end
refparam result |

|

call fact, 2

Y.N. Srikant Intermediate Code Generation

Code Templates for If-Then-Else Statement

Assumption: No short-circuit evaluation for E (i.e., no jumps
within the intermediate code for E)

If (E) S1 else S2
code for E (result in T)
if T<O0 goto L1/*if T is false, jump to else part */
code for S1 /* all exits from within S1 also jump to L2 */
goto L2 /* jump to exit */
L1: code for S2 /* all exits from within S2 also jump to L2 */
L2: /*exit*/

If (E) S

code for E (result in T)

if T<O0 goto L1 /*if Tis false, jump to exit */

code for S /* all exits from within S also jump to L1 */
L1: /*exit™/

Y.N. Srikant Intermediate Code Generation

Code Template for While-do Statement

Assumption: No short-circuit evaluation for E (i.e., no jumps
within the intermediate code for E)

while (E) do S

L1: code for E (resultin T)
if T<O0 goto L2 /*if T is false, jump to exit */
code for S /* all exits from within S also jump to L1 */
goto L1 /* loop back */

L2: /* exit */

Y.N. Srikant Intermediate Code Generation

Translations for If-Then-Else Statement

Let us see the code generated for the following code fragment.
A; are all assignments, and E; are all expressions
if (Eq) {if (Eo) Aq; else Ay; Jelse As; Ag;

1 code for E1 /* result in T1 */
10 if (T1 <=0), goto L1 (61)
/*if T1 is false jump to else part */
11 code for E2 /* result in T2 */
35 if (T2 <= 0), goto L2 (43)
/*if T2 is false jump to else part */
36 code for A1
42 goto L3 (82)
43 L2: code for A2
60 goto L3 (82)

61 L1: code for A3
82 L3: code for A4

Y.N. Srikant Intermediate Code Generation

Translations for while-do Statement

Code fragment:
while (E;) do {if (E2) then Aqy; else Ax;} As;

1 L1:
15

16
30

31
54
55 La:
78
79 L2:

code for E1 /* result in T1 */

if (T1 <= 0), goto L2 (79)

/*if T1 is false jump to loop exit */
code for E2 /* result in T2 */

if (T2 <= 0), goto L3 (55)

/*if T2 is false jump to else part */
code for A1

goto L1 (1)/* loop back */

code for A2

goto L1 (1)/* loop back */

code for A3

Y.N. Srikant Intermediate Code Generation

SATG - Attributes

@ S.next, N.next: list of quads indicating where to jump;
target of jump is still undefined

@ IFEXP-falselist: quad indicating where to jump if the
expression is false; target of jump is still undefined
@ E.result: pointer to symbol table entry
e All temporaries generated during intermediate code
generation are inserted into the symbol table
e In quadruplef/triple/tree representation, pointers to symbol
table entries for variables and temporaries are used in
place of names
e However, textual examples will use names

Y.N. Srikant Intermediate Code Generation

SATG - Auxiliary functions/variables

@ nextquad: global variable containing the number of the next
quadruple to be generated

@ backpatch(list, quad_number): patches target of all ‘goto’
quads on the ‘list’ to ‘quad_number’

@ merge(list-1, list-2,...,list-n): merges all the lists supplied as
parameters

@ gen(‘quadruple’): generates ‘quadruple’ at position
‘nextquad’ and increments ‘nextquad’

e In quadruple/triple/tree representation, pointers to symbol
table entries for variables and temporaries are used in
place of names

o However, textual examples will use names

@ newtemp(temp-type): generates a temporary name of type
temp-type, inserts it into the symbol table, and returns the
pointer to that entry in the symbol table

Y.N. Srikant Intermediate Code Generation

SATG for If-Then-Else Statement

@ IFEXP — if E
{ IFEXPfalselist := makelist(nextquad);
gen(‘if E.result <0 goto_);}
@ S— IFEXP Si; N else M S,
{ backpatch(IFEXP.falselist, M.quad);
S.next := merge(S;.next, So.next, N.next); }
@ S— IFEXP Sq;
{ S.next := merge(S;.next, IFEXPfalselist); }
o N—e
{ N.next := makelist(nextquad);
gen(‘goto __’); }
o M—e
{ M.quad := nextquad; }

Y.N. Srikant Intermediate Code Generation

