
Intermediate Code Generation - Part 1

Y.N. Srikant

Department of Computer Science and Automation
Indian Institute of Science

Bangalore 560 012

NPTEL Course on Principles of Compiler Design

Y.N. Srikant Intermediate Code Generation



Outline of the Lecture

Introduction
Different types of intermediate code
Intermediate code generation for various constructs

Y.N. Srikant Intermediate Code Generation



Compiler Overview

Y.N. Srikant Intermediate Code Generation



Compilers and Interpreters

Compilers generate machine code, whereas interpreters
interpret intermediate code
Interpreters are easier to write and can provide better error
messages (symbol table is still available)
Interpreters are at least 5 times slower than machine code
generated by compilers
Interpreters also require much more memory than machine
code generated by compilers
Examples: Perl, Python, Unix Shell, Java, BASIC, LISP

Y.N. Srikant Intermediate Code Generation



Why Intermediate Code? - 1

Y.N. Srikant Intermediate Code Generation



Why Intermediate Code? - 2

While generating machine code directly from source code
is possible, it entails two problems

With m languages and n target machines, we need to write
m front ends, m × n optimizers, and m × n code generators
The code optimizer which is one of the largest and
very-difficult-to-write components of a compiler, cannot be
reused

By converting source code to an intermediate code, a
machine-independent code optimizer may be written
This means just m front ends, n code generators and 1
optimizer

Y.N. Srikant Intermediate Code Generation



Different Types of Intermediate Code

Intermediate code must be easy to produce and easy to
translate to machine code

A sort of universal assembly language
Should not contain any machine-specific parameters
(registers, addresses, etc.)

The type of intermediate code deployed is based on the
application
Quadruples, triples, indirect triples, abstract syntax trees
are the classical forms used for machine-independent
optimizations and machine code generation
Static Single Assignment form (SSA) is a recent form and
enables more effective optimizations

Conditional constant propagation and global value
numbering are more effective on SSA

Program Dependence Graph (PDG) is useful in automatic
parallelization, instruction scheduling, and software
pipelining

Y.N. Srikant Intermediate Code Generation



Three-Address Code

Instructions are very simple
Examples: a = b + c, x = -y, if a > b goto L1

LHS is the target and the RHS has at most two sources
and one operator
RHS sources can be either variables or constants
Three-address code is a generic form and can be
implemented as quadruples, triples, indirect triples, tree or
DAG
Example: The three-address code for a+b*c-d/(b*c)
is below

1 t1 = b*c
2 t2 = a+t1
3 t3 = b*c
4 t4 = d/t3
5 t5 = t2-t4

Y.N. Srikant Intermediate Code Generation



Implementations of 3-Address Code

Y.N. Srikant Intermediate Code Generation



Instructions in Three-Address Code - 1

1 Assignment instructions:
a = b biop c, a = uop b, and a = b (copy), where

biop is any binary arithmetic, logical, or relational operator
uop is any unary arithmetic (-, shift, conversion) or logical
operator (∼)
Conversion operators are useful for converting integers to
floating point numbers, etc.

2 Jump instructions:
goto L (unconditional jump to L),
if t goto L (it t is true then jump to L),
if a relop b goto L (jump to L if a relop b is true),
where

L is the label of the next three-address instruction to be
executed
t is a boolean variable
a and b are either variables or constants

Y.N. Srikant Intermediate Code Generation



Instructions in Three-Address Code - 2

3 Functions:
func begin <name> (beginning of the function),
func end (end of a function),
param p (place a value parameter p on stack),
refparam p (place a reference parameter p on stack),
call f, n (call a function f with n parameters),
return (return from a function),
return a (return from a function with a value a)

4 Indexed copy instructions:
a = b[i] (a is set to contents(contents(b)+contents(i)),
where b is (usually) the base address of an array
a[i] = b (i th location of array a is set to b)

5 Pointer assignments:
a = &b (a is set to the address of b, i.e., a points to b)
*a = b (contents(contents(a)) is set to contents(b))
a = *b (a is set to contents(contents(b)))

Y.N. Srikant Intermediate Code Generation



Intermediate Code - Example 1

C-Program

int a[10], b[10], dot_prod, i;
dot_prod = 0;
for (i=0; i<10; i++) dot_prod += a[i]*b[i];

Intermediate code

dot_prod = 0; | T6 = T4[T5]
i = 0; | T7 = T3*T6

L1: if(i >= 10)goto L2 | T8 = dot_prod+T7
T1 = addr(a) | dot_prod = T8
T2 = i*4 | T9 = i+1
T3 = T1[T2] | i = T9
T4 = addr(b) | goto L1
T5 = i*4 |L2:

Y.N. Srikant Intermediate Code Generation



Intermediate Code - Example 2

C-Program

int a[10], b[10], dot_prod, i; int* a1; int* b1;
dot_prod = 0; a1 = a; b1 = b;
for (i=0; i<10; i++) dot_prod += *a1++ * *b1++;

Intermediate code

dot_prod = 0; | b1 = T6
a1 = &a | T7 = T3*T5
b1 = &b | T8 = dot_prod+T7
i = 0 | dot_prod = T8

L1: if(i>=10)goto L2 | T9 = i+1
T3 = *a1 | i = T9
T4 = a1+1 | goto L1
a1 = T4 |L2:
T5 = *b1
T6 = b1+1

Y.N. Srikant Intermediate Code Generation



Intermediate Code - Example 3

C-Program (function)
int dot_prod(int x[], int y[]){
int d, i; d = 0;
for (i=0; i<10; i++) d += x[i]*y[i];
return d;

}
Intermediate code

func begin dot_prod | T6 = T4[T5]
d = 0; | T7 = T3*T6
i = 0; | T8 = d+T7

L1: if(i >= 10)goto L2 | d = T8
T1 = addr(x) | T9 = i+1
T2 = i*4 | i = T9
T3 = T1[T2] | goto L1
T4 = addr(y) |L2: return d
T5 = i*4 | func end

Y.N. Srikant Intermediate Code Generation



Intermediate Code - Example 3 (contd.)

C-Program (main)
main(){
int p; int a[10], b[10];
p = dot_prod(a,b);

}
Intermediate code

func begin main
refparam a
refparam b
refparam result
call dot_prod, 3
p = result
func end

Y.N. Srikant Intermediate Code Generation



Intermediate Code - Example 4

C-Program (function)

int fact(int n){
if (n==0) return 1;
else return (n*fact(n-1));

}

Intermediate code

func begin fact | T3 = n*result
if (n==0) goto L1 | return T3
T1 = n-1 | L1: return 1
param T1 | func end
refparam result |
call fact, 2 |

Y.N. Srikant Intermediate Code Generation



Code Templates for If-Then-Else Statement

Assumption: No short-circuit evaluation for E (i.e., no jumps
within the intermediate code for E)

If (E) S1 else S2
code for E (result in T)
if T≤ 0 goto L1 /* if T is false, jump to else part */
code for S1 /* all exits from within S1 also jump to L2 */
goto L2 /* jump to exit */

L1: code for S2 /* all exits from within S2 also jump to L2 */
L2: /* exit */

If (E) S
code for E (result in T)
if T≤ 0 goto L1 /* if T is false, jump to exit */
code for S /* all exits from within S also jump to L1 */

L1: /* exit */

Y.N. Srikant Intermediate Code Generation



Code Template for While-do Statement

Assumption: No short-circuit evaluation for E (i.e., no jumps
within the intermediate code for E)

while (E) do S
L1: code for E (result in T)

if T≤ 0 goto L2 /* if T is false, jump to exit */
code for S /* all exits from within S also jump to L1 */
goto L1 /* loop back */

L2: /* exit */

Y.N. Srikant Intermediate Code Generation



Translations for If-Then-Else Statement

Let us see the code generated for the following code fragment.
Ai are all assignments, and Ei are all expressions
if (E1) { if (E2) A1; else A2; }else A3; A4;
—————————————————-

1 code for E1 /* result in T1 */
10 if (T1 <= 0), goto L1 (61)

/* if T1 is false jump to else part */
11 code for E2 /* result in T2 */
35 if (T2 <= 0), goto L2 (43)

/* if T2 is false jump to else part */
36 code for A1
42 goto L3 (82)
43 L2: code for A2
60 goto L3 (82)
61 L1: code for A3
82 L3: code for A4

Y.N. Srikant Intermediate Code Generation



Translations for while-do Statement

Code fragment:
while (E1) do {if (E2) then A1; else A2;} A3;

1 L1: code for E1 /* result in T1 */
15 if (T1 <= 0), goto L2 (79)

/* if T1 is false jump to loop exit */
16 code for E2 /* result in T2 */
30 if (T2 <= 0), goto L3 (55)

/* if T2 is false jump to else part */
31 code for A1
54 goto L1 (1)/* loop back */
55 L3: code for A2
78 goto L1 (1)/* loop back */
79 L2: code for A3

Y.N. Srikant Intermediate Code Generation



SATG - Attributes

S.next, N.next: list of quads indicating where to jump;
target of jump is still undefined
IFEXP.falselist: quad indicating where to jump if the
expression is false; target of jump is still undefined
E.result: pointer to symbol table entry

All temporaries generated during intermediate code
generation are inserted into the symbol table
In quadruple/triple/tree representation, pointers to symbol
table entries for variables and temporaries are used in
place of names
However, textual examples will use names

Y.N. Srikant Intermediate Code Generation



SATG - Auxiliary functions/variables

nextquad: global variable containing the number of the next
quadruple to be generated
backpatch(list, quad_number): patches target of all ‘goto’
quads on the ‘list’ to ‘quad_number’
merge(list-1, list-2,...,list-n): merges all the lists supplied as
parameters
gen(‘quadruple’): generates ‘quadruple’ at position
‘nextquad’ and increments ‘nextquad’

In quadruple/triple/tree representation, pointers to symbol
table entries for variables and temporaries are used in
place of names
However, textual examples will use names

newtemp(temp-type): generates a temporary name of type
temp-type, inserts it into the symbol table, and returns the
pointer to that entry in the symbol table

Y.N. Srikant Intermediate Code Generation



SATG for If-Then-Else Statement

IFEXP → if E
{ IFEXP.falselist := makelist(nextquad);
gen(‘if E.result ≤ 0 goto __’); }

S → IFEXP S1; N else M S2
{ backpatch(IFEXP.falselist, M.quad);
S.next := merge(S1.next, S2.next, N.next); }

S → IFEXP S1;
{ S.next := merge(S1.next, IFEXP.falselist); }
N → ε
{ N.next := makelist(nextquad);
gen(‘goto __’); }

M → ε
{ M.quad := nextquad; }

Y.N. Srikant Intermediate Code Generation


