
Semantic Analysis with Attribute Grammars
Part 1

Y.N. Srikant

Department of Computer Science and Automation
Indian Institute of Science

Bangalore 560 012

NPTEL Course on Principles of Compiler Design

Y.N. Srikant Semantic Analysis

Outline of the Lecture

Introduction
Attribute grammars
Attributed translation grammars
Semantic analysis with attributed translation grammars

Y.N. Srikant Semantic Analysis

Compiler Overview

Y.N. Srikant Semantic Analysis

Semantic Analysis

Semantic consistency that cannot be handled at the
parsing stage is handled here
Parsers cannot handle context-sensitive features of
programming languages
These are static semantics of programming languages and
can be checked by the semantic analyzer

Variables are declared before use
Types match on both sides of assignments
Parameter types and number match in declaration and use

Compilers can only generate code to check dynamic
semantics of programming languages at runtime

whether an overflow will occur during an aritmetic operation
whether array limits will be crossed during execution
whether recursion will cross stack limits
whether heap memory will be insufficient

Y.N. Srikant Semantic Analysis

Static Semantics

int dot_prod(int x[], int y[]){
int d, i; d = 0;
for (i=0; i<10; i++) d += x[i]*y[i];
return d;

}
main(){
int p; int a[10], b[10];
p = dot_prod(a,b);

}

Samples of static semantic checks in main
Types of p and return type of dot_prod match
Number and type of the parameters of dot_prod are the
same in both its declaration and use
p is declared before use, same for a and b

Y.N. Srikant Semantic Analysis

Static Semantics: Errors given by gcc Compiler

int dot_product(int a[], int b[]) {...}

1 main(){int a[10]={1,2,3,4,5,6,7,8,9,10};
2 int b[10]={1,2,3,4,5,6,7,8,9,10};
3 printf("%d", dot_product(b));
4 printf("%d", dot_product(a,b,a));
5 int p[10]; p=dotproduct(a,b); printf("%d",p);}

In function ‘main’:
error in 3: too few arguments to fn ‘dot_product’
error in 4: too many arguments to fn ‘dot_product’
error in 5: incompatible types in assignment
warning in 5: format ‘%d’ expects type ‘int’, but

argument 2 has type ‘int *’

Y.N. Srikant Semantic Analysis

Static Semantics

int dot_prod(int x[], int y[]){
int d, i; d = 0;
for (i=0; i<10; i++) d += x[i]*y[i];
return d;

}
main(){
int p; int a[10], b[10];
p = dot_prod(a,b);

}

Samples of static semantic checks in dot_prod
d and i are declared before use
Type of d matches the return type of dot_prod
Type of d matches the result type of “∗”
Elements of arrays x and y are compatible with “∗”

Y.N. Srikant Semantic Analysis

Dynamic Semantics

int dot_prod(int x[], int y[]){
int d, i; d = 0;
for (i=0; i<10; i++) d += x[i]*y[i];
return d;

}
main(){
int p; int a[10], b[10];
p = dot_prod(a,b);

}

Samples of dynamic semantic checks in dot_prod
Value of i does not exceed the declared range of arrays x
and y (both lower and upper)
There are no overflows during the operations of “∗” and “+”
in d += x[i]*y[i]

Y.N. Srikant Semantic Analysis

Dynamic Semantics

int fact(int n){
if (n==0) return 1;
else return (n*fact(n-1));

}
main(){int p; p = fact(10); }

Samples of dynamic semantic checks in fact
Program stack does not overflow due to recursion
There is no overflow due to “∗” in n*fact(n-1)

Y.N. Srikant Semantic Analysis

Semantic Analysis

Type information is stored in the symbol table or the syntax
tree

Types of variables, function parameters, array dimensions,
etc.
Used not only for semantic validation but also for
subsequent phases of compilation

If declarations need not appear before use (as in C++),
semantic analysis needs more than one pass
Static semantics of PL can be specified using attribute
grammars
Semantic analyzers can be generated semi-automatically
from attribute grammars
Attribute grammars are extensions of context-free
grammars

Y.N. Srikant Semantic Analysis

Attribute Grammars

Let G = (N,T ,P,S) be a CFG and let V = N ∪ T .
Every symbol X of V has associated with it a set of
attributes (denoted by X .a, X .b, etc.)
Two types of attributes: inherited (denoted by AI(X))and
synthesized (denoted by AS(X))
Each attribute takes values from a specified domain (finite
or infinite), which is its type

Typical domains of attributes are, integers, reals,
characters, strings, booleans, structures, etc.
New domains can be constructed from given domains by
mathematical operations such as cross product, map, etc.
array: a map, N → D, where, N and D are domains of
natural numbers and the given objects, respectively
structure: a cross-product, A1 × A2 × . . .× An, where n is
the number of fields in the structure, and Ai is the domain of
the i th field

Y.N. Srikant Semantic Analysis

Attribute Computation Rules

A production p ∈ P has a set of attribute computation rules
(functions)
Rules are provided for the computation of

Synthesized attributes of the LHS non-terminal of p
Inherited attributes of the RHS non-terminals of p

These rules can use attributes of symbols from the
production p only

Rules are strictly local to the production p (no side effects)
Restrictions on the rules define different types of attribute
grammars

L-attribute grammars, S-attribute grammars, ordered
attribute grammars, absolutely non-circular attribute
grammars, circular attribute grammars, etc.

Y.N. Srikant Semantic Analysis

Synthesized and Inherited Attributes

An attribute cannot be both synthesized and inherited, but
a symbol can have both types of attributes
Attributes of symbols are evaluated over a parse tree by
making passes over the parse tree
Synthesized attributes are computed in a bottom-up
fashion from the leaves upwards

Always synthesized from the attribute values of the children
of the node
Leaf nodes (terminals) have synthesized attributes
initialized by the lexical analyzer and cannot be modified
An AG with only synthesized attributes is an S-attributed
grammar (SAG)
YACC permits only SAGs

Inherited attributes flow down from the parent or siblings to
the node in question

Y.N. Srikant Semantic Analysis

Attribute Grammar - Example 1

The following CFG
S → A B C, A→ aA | a, B → bB | b, C → cC | c
generates: L(G) = {ambncp | m,n,p ≥ 1}
We define an AG (attribute grammar) based on this CFG to
generate L = {anbncn | n ≥ 1}
All the non-terminals will have only synthesized attributes

AS(S) = {equal ↑: {T ,F}}
AS(A) = AS(B) = AS(C) = {count ↑: integer}

Y.N. Srikant Semantic Analysis

Attribute Grammar - Example 1 (contd.)

1 S → ABC {S.equal ↑:= if A.count ↑= B.count ↑ &
B.count ↑= C.count ↑ then T else F}

2 A1 → aA2 {A1.count ↑:= A2.count ↑ +1}
3 A→ a {A.count ↑:= 1}
4 B1 → bB2 {B1.count ↑:= B2.count ↑ +1}
5 B → b {B.count ↑:= 1}
6 C1 → cC2 {C1.count ↑:= C2.count ↑ +1}
7 C → c {C.count ↑:= 1}

Y.N. Srikant Semantic Analysis

Attribute Grammar - Example 1 (contd.)

1 S → ABC {S.equal ↑:= if A.count ↑= B.count ↑ &
B.count ↑= C.count ↑ then T else F}

2 A1 → aA2 {A1.count ↑:= A2.count ↑ +1}
3 A→ a {A.count ↑:= 1}
4 B1 → bB2 {B1.count ↑:= B2.count ↑ +1}
5 B → b {B.count ↑:= 1}
6 C1 → cC2 {C1.count ↑:= C2.count ↑ +1}
7 C → c {C.count ↑:= 1}

Y.N. Srikant Semantic Analysis

Attribute Grammar - Example 1 (contd.)

1 S → ABC {S.equal ↑:= if A.count ↑= B.count ↑ &
B.count ↑= C.count ↑ then T else F}

2 A1 → aA2 {A1.count ↑:= A2.count ↑ +1}
3 A→ a {A.count ↑:= 1}
4 B1 → bB2 {B1.count ↑:= B2.count ↑ +1}
5 B → b {B.count ↑:= 1}
6 C1 → cC2 {C1.count ↑:= C2.count ↑ +1}
7 C → c {C.count ↑:= 1}

Y.N. Srikant Semantic Analysis

Attribute Grammar - Example 1 (contd.)

1 S → ABC {S.equal ↑:= if A.count ↑= B.count ↑ &
B.count ↑= C.count ↑ then T else F}

2 A1 → aA2 {A1.count ↑:= A2.count ↑ +1}
3 A→ a {A.count ↑:= 1}
4 B1 → bB2 {B1.count ↑:= B2.count ↑ +1}
5 B → b {B.count ↑:= 1}
6 C1 → cC2 {C1.count ↑:= C2.count ↑ +1}
7 C → c {C.count ↑:= 1}

Y.N. Srikant Semantic Analysis

Attribute Dependence Graph

Let T be a parse tree generated by the CFG of an AG, G.
The attribute dependence graph (dependence graph for
short) for T is the directed graph, DG(T) = (V ,E), where

V = {b|b is an attribute instance of some tree node}, and

E = {(b, c)|b, c ∈ V , b and c are attributes of grammar
symbols in the same production p of B, and the value of b
is used for computing the value of c in an attribute
computation rule associated with production p}

Y.N. Srikant Semantic Analysis

Attribute Dependence Graph

An AG G is non-circular, iff for all trees T derived from G,
DG(T) is acyclic

Non-circularity is very expensive to determine (exponential
in the size of the grammar)
Therefore, our interest will be in subclasses of AGs whose
non-circularity can be determined efficiently

Assigning consistent values to the attribute instances in
DG(T) is attribute evaluation

Y.N. Srikant Semantic Analysis

Attribute Evaluation Strategy

Construct the parse tree
Construct the dependence graph
Perform topological sort on the dependence graph and
obtain an evaluation order
Evaluate attributes according to this order using the
corresponding attribute evaluation rules attached to the
respective productions
Multiple attributes at a node in the parse tree may result in
that node to be visited multiple number of times

Each visit resulting in the evaluation of at least one attribute

Y.N. Srikant Semantic Analysis

Attribute Evaluation Algorithm

Input: A parse tree T with unevaluated attribute instances
Output: T with consistent attribute values
{ Let (V ,E) = DG(T);

Let W = {b | b ∈ V & indegree(b) = 0};
while W 6= φ do

{ remove some b from W ;
value(b) := value defined by appropriate attribute

computation rule;
for all (b, c) ∈ E do

{ indegree(c) := indegree(c)− 1;
if indegree(c) = 0 then W := W ∪ {c};

}
}

}

Y.N. Srikant Semantic Analysis

Dependence Graph for Example 1

Y.N. Srikant Semantic Analysis

Attribute Grammar - Example 2

AG for the evaluation of a real number from its bit-string
representation
Example: 110.101 = 6.625
N → L.R, L→ BL | B, R → BR | B, B → 0 | 1
AS(N) = AS(R) = AS(B) = {value ↑: real},
AS(L) = {length ↑: integer , value ↑: real}

1 N → L.R {N.value ↑:= L.value ↑ +R.value ↑}
2 L→ B {L.value ↑:= B.value ↑; L.length ↑:= 1}
3 L1 → BL2 {L1.length ↑:= L2.length ↑ +1;

L1.value ↑:= B.value ↑ ∗2L2.length↑ + L2.value ↑}
4 R → B {R.value ↑:= B.value ↑ /2}
5 R1 → BR2 {R1.value ↑:= (B.value ↑ +R2.value ↑)/2}
6 B → 0 {B.value ↑:= 0}
7 B → 1 {B.value ↑:= 1}

Y.N. Srikant Semantic Analysis

