Semantic Analysis with Attribute Grammars Part 1

Y.N. Srikant
Department of Computer Science and Automation Indian Institute of Science
Bangalore 560012
NPTEL Course on Principles of Compiler Design

Outline of the Lecture

- Introduction
- Attribute grammars
- Attributed translation grammars
- Semantic analysis with attributed translation grammars

Compiler Overview

Semantic Analysis

- Semantic consistency that cannot be handled at the parsing stage is handled here
- Parsers cannot handle context-sensitive features of programming languages
- These are static semantics of programming languages and can be checked by the semantic analyzer
- Variables are declared before use
- Types match on both sides of assignments
- Parameter types and number match in declaration and use
- Compilers can only generate code to check dynamic semantics of programming languages at runtime
- whether an overflow will occur during an aritmetic operation
- whether array limits will be crossed during execution
- whether recursion will cross stack limits
- whether heap memory will be insufficient

Static Semantics

```
int dot_prod(int x[], int y[]){
    int d, i; d = 0;
    for (i=0; i<10; i++) d += x[i]*y[i];
    return d;
}
main() {
    int p; int a[10], b[10];
    p = dot__prod(a,b);
}
```

Samples of static semantic checks in main

- Types of p and return type of dot_prod match
- Number and type of the parameters of dot_prod are the same in both its declaration and use
- p is declared before use, same for a and b

Static Semantics: Errors given by gcc Compiler

int dot_product(int a[], int b[]) \{...\}

1 main() \{int a[10]=\{1,2,3,4,5,6,7,8,9,10\};
2 int $b[10]=\{1,2,3,4,5,6,7,8,9,10\}$;
3 printf("\%d", dot_product(b));
4 printf("\%d", dot_product (a,b,a));
5 int $p[10] ; \mathrm{p}=$ dotproduct (a,b); printf("\%d",p);\}

In function 'main':
error in 3: too few arguments to fn 'dot_product'
error in 4: too many arguments to fn 'dot_product'
error in 5: incompatible types in assignment
warning in 5: format '\%d' expects type 'int', but argument 2 has type 'int *'

Static Semantics

```
int dot_prod(int x[], int y[]){
    int d, i; d = 0;
    for (i=0; i<10; i++) d += x[i]*y[i];
    return d;
}
main() {
    int p; int a[10], b[10];
    p = dot__prod(a,b);
}
```

Samples of static semantic checks in dot_prod

- d and i are declared before use
- Type of d matches the return type of dot_prod
- Type of d matches the result type of " $*$ "
- Elements of arrays x and y are compatible with " $*$ "

Dynamic Semantics

```
int dot_prod(int x[], int y[]){
    int d, i; d = 0;
    for (i=0; i<10; i++) d += x[i]*y[i];
    return d;
}
main() {
    int p; int a[10], b[10];
    p = dot__prod(a,b);
}
```

Samples of dynamic semantic checks in dot_prod

- Value of i does not exceed the declared range of arrays x and y (both lower and upper)
- There are no overflows during the operations of " $*$ " and "+" in d += $x[i] * y[i]$

Dynamic Semantics

```
int fact(int n) {
    if (n==0) return 1;
    else return (n*fact (n-1));
}
main() {int p; p = fact(10); }
```

Samples of dynamic semantic checks in fact

- Program stack does not overflow due to recursion
- There is no overflow due to "*" in $n *$ fact ($n-1$)

Semantic Analysis

- Type information is stored in the symbol table or the syntax tree
- Types of variables, function parameters, array dimensions, etc.
- Used not only for semantic validation but also for subsequent phases of compilation
- If declarations need not appear before use (as in C++), semantic analysis needs more than one pass
- Static semantics of PL can be specified using attribute grammars
- Semantic analyzers can be generated semi-automatically from attribute grammars
- Attribute grammars are extensions of context-free grammars

Attribute Grammars

- Let $G=(N, T, P, S)$ be a CFG and let $V=N \cup T$.
- Every symbol X of V has associated with it a set of attributes (denoted by X.a, X.b, etc.)
- Two types of attributes: inherited (denoted by $A I(X)$)and synthesized (denoted by $A S(X)$)
- Each attribute takes values from a specified domain (finite or infinite), which is its type
- Typical domains of attributes are, integers, reals, characters, strings, booleans, structures, etc.
- New domains can be constructed from given domains by mathematical operations such as cross product, map, etc.
- array: a map, $\mathcal{N} \rightarrow \mathcal{D}$, where, \mathcal{N} and \mathcal{D} are domains of natural numbers and the given objects, respectively
- structure: a cross-product, $A_{1} \times A_{2} \times \ldots \times A_{n}$, where n is the number of fields in the structure, and A_{i} is the domain of the $i^{\text {th }}$ field

Attribute Computation Rules

- A production $p \in P$ has a set of attribute computation rules (functions)
- Rules are provided for the computation of
- Synthesized attributes of the LHS non-terminal of p
- Inherited attributes of the RHS non-terminals of p
- These rules can use attributes of symbols from the production p only
- Rules are strictly local to the production p (no side effects)
- Restrictions on the rules define different types of attribute grammars
- L-attribute grammars, S-attribute grammars, ordered attribute grammars, absolutely non-circular attribute grammars, circular attribute grammars, etc.

Synthesized and Inherited Attributes

- An attribute cannot be both synthesized and inherited, but a symbol can have both types of attributes
- Attributes of symbols are evaluated over a parse tree by making passes over the parse tree
- Synthesized attributes are computed in a bottom-up fashion from the leaves upwards
- Always synthesized from the attribute values of the children of the node
- Leaf nodes (terminals) have synthesized attributes initialized by the lexical analyzer and cannot be modified
- An AG with only synthesized attributes is an S-attributed grammar (SAG)
- YACC permits only SAGs
- Inherited attributes flow down from the parent or siblings to the node in question

Attribute Grammar - Example 1

- The following CFG
$S \rightarrow A B C, A \rightarrow a A|a, B \rightarrow b B| b, C \rightarrow c C \mid c$
generates: $L(G)=\left\{a^{m} b^{n} c^{p} \mid m, n, p \geq 1\right\}$
- We define an AG (attribute grammar) based on this CFG to generate $L=\left\{a^{n} b^{n} c^{n} \mid n \geq 1\right\}$
- All the non-terminals will have only synthesized attributes
- $A S(S)=\{$ equal $\uparrow:\{T, F\}\}$
- $A S(A)=A S(B)=A S(C)=\{$ count \uparrow : integer $\}$

Attribute Grammar - Example 1 (contd.)

(1) $S \rightarrow A B C$ \{S.equal $\uparrow:=$ if A.count $\uparrow=B . c o u n t \uparrow$ \& B.count $\uparrow=$ C.count \uparrow then T else $F\}$
(2) $A_{1} \rightarrow a A_{2}\left\{A_{1}\right.$.count $\uparrow:=A_{2}$.count $\left.\uparrow+1\right\}$
(3) $A \rightarrow a\{$ A.count $\uparrow:=1\}$
(4) $B_{1} \rightarrow b B_{2}\left\{B_{1}\right.$.count $\uparrow:=B_{2}$.count $\left.\uparrow+1\right\}$
(5) $B \rightarrow b\{B$.count $\uparrow:=1\}$
(6) $C_{1} \rightarrow c C_{2}\left\{C_{1}\right.$.count $\uparrow:=C_{2}$.count $\left.\uparrow+1\right\}$
(7) $C \rightarrow c\{C$.count $\uparrow:=1\}$

Attribute Grammar - Example 1 (contd.)

(1) $S \rightarrow A B C$ \{S.equal $\uparrow:=$ if A.count $\uparrow=B . c o u n t \uparrow$ \& B.count $\uparrow=$ C.count \uparrow then T else $F\}$
(2) $A_{1} \rightarrow a A_{2}\left\{A_{1}\right.$.count $\uparrow:=A_{2}$.count $\left.\uparrow+1\right\}$
(3) $A \rightarrow a\{$ A.count $\uparrow:=1\}$
(4) $B_{1} \rightarrow b B_{2}\left\{B_{1}\right.$.count $\uparrow:=B_{2}$.count $\left.\uparrow+1\right\}$
(5) $B \rightarrow b\{B$.count $\uparrow:=1\}$
(6) $C_{1} \rightarrow c C_{2}\left\{C_{1}\right.$.count $\uparrow:=C_{2}$.count $\left.\uparrow+1\right\}$
(7) $C \rightarrow c\{C$.count $\uparrow:=1\}$

Attribute Grammar - Example 1 (contd.)

(1) $S \rightarrow A B C$ \{S.equal $\uparrow:=$ if A.count $\uparrow=B . c o u n t \uparrow$ \& B.count $\uparrow=$ C.count \uparrow then T else $F\}$
(2) $A_{1} \rightarrow a A_{2}\left\{A_{1}\right.$.count $\uparrow:=A_{2}$.count $\left.\uparrow+1\right\}$
(3) $A \rightarrow a\{$ A.count $\uparrow:=1\}$
(4) $B_{1} \rightarrow b B_{2}\left\{B_{1}\right.$.count $\uparrow:=B_{2}$.count $\left.\uparrow+1\right\}$
(5) $B \rightarrow b\{B$.count $\uparrow:=1\}$
(6) $C_{1} \rightarrow c C_{2}\left\{C_{1}\right.$.count $\uparrow:=C_{2}$.count $\left.\uparrow+1\right\}$
(7) $C \rightarrow c\{C$.count $\uparrow:=1\}$

Attribute Grammar - Example 1 (contd.)

(1) $S \rightarrow A B C$ \{S.equal $\uparrow:=$ if A.count $\uparrow=B . c o u n t \uparrow$ \& B.count $\uparrow=$ C.count \uparrow then T else $F\}$
(2) $A_{1} \rightarrow a A_{2}\left\{A_{1}\right.$.count $\uparrow:=A_{2}$.count $\left.\uparrow+1\right\}$
(3) $A \rightarrow a\{$ A.count $\uparrow:=1\}$
(4) $B_{1} \rightarrow b B_{2}\left\{B_{1}\right.$.count $\uparrow:=B_{2}$.count $\left.\uparrow+1\right\}$
(5) $B \rightarrow b\{B$.count $\uparrow:=1\}$
(6) $C_{1} \rightarrow c C_{2}\left\{C_{1}\right.$.count $\uparrow:=C_{2}$.count $\left.\uparrow+1\right\}$
(7) $C \rightarrow c\{C$.count $\uparrow:=1\}$

Attribute Dependence Graph

- Let T be a parse tree generated by the CFG of an AG, G.
- The attribute dependence graph (dependence graph for short) for T is the directed graph, $D G(T)=(V, E)$, where
$V=\{b \mid b$ is an attribute instance of some tree node $\}$, and
$E=\{(b, c) \mid b, c \in V, b$ and c are attributes of grammar symbols in the same production p of B, and the value of b is used for computing the value of c in an attribute computation rule associated with production $p\}$

Attribute Dependence Graph

- An AG G is non-circular, iff for all trees T derived from G, $D G(T)$ is acyclic
- Non-circularity is very expensive to determine (exponential in the size of the grammar)
- Therefore, our interest will be in subclasses of AGs whose non-circularity can be determined efficiently
- Assigning consistent values to the attribute instances in $\mathrm{DG}(\mathrm{T})$ is attribute evaluation

Attribute Evaluation Strategy

- Construct the parse tree
- Construct the dependence graph
- Perform topological sort on the dependence graph and obtain an evaluation order
- Evaluate attributes according to this order using the corresponding attribute evaluation rules attached to the respective productions
- Multiple attributes at a node in the parse tree may result in that node to be visited multiple number of times
- Each visit resulting in the evaluation of at least one attribute

Attribute Evaluation Algorithm

Input: A parse tree T with unevaluated attribute instances
Output: T with consistent attribute values
\{ Let $(V, E)=D G(T)$;
Let $W=\{b \mid b \in V$ \& indegree $(b)=0\}$;
while $W \neq \phi$ do
\{ remove some b from W;
value (b) := value defined by appropriate attribute computation rule;
for all $(b, c) \in E$ do
\{ indegree $(c):=$ indegree $(c)-1$;
if indegree $(c)=0$ then $W:=W \cup\{c\}$;
\}
\}
\}

Dependence Graph for Example 1

1,2,3,4,5,6,7 and $2,3,6,5,1,4,7$ are two possible evaluation orders. 1,4,2,5,3,6,7 can be
used with LR-parsing. The right-most derivation is below (its reverse is LR-parsing order)
$S=>A B C=>A B c C=>A B c c=>A b B c c=>A b b c c=>a A b b c c=>$ aabbcc

1. A.count $=1\{\mathrm{~A} \rightarrow \mathrm{a},\{\mathrm{A}$. count $:=1\}\}$
2. A.count $=2\left\{A_{1} \rightarrow \mathrm{aA}_{2},\left\{\mathrm{~A}_{1}\right.\right.$.count $:=\mathrm{A}_{2}$.count +1$\left.\}\right\}$
3. B.count $=1\{B \rightarrow b,\{B . c o u n t:=1\}\}$
4. B.count $=2\left\{B_{1} \rightarrow b B_{2},\left\{B_{1}\right.\right.$.count := B_{2}.count +1$\left.\}\right\}$
5. C.count $=1\{\mathrm{C} \rightarrow \mathrm{c},\{\mathrm{C}$. count $:=1\}\}$
6. C.count $=2\left\{C_{1} \rightarrow \mathrm{cC}_{2},\left\{\mathrm{C}_{1}\right.\right.$. count $:=\mathrm{C}_{2}$.count +1$\left.\}\right\}$
7. S.equal $=1\{\mathrm{~S} \rightarrow \mathrm{ABC},\{\mathrm{S}$. equal $:=$ if A.count $=$ B.count \&
B.count = C.count then T else F\}\}

Attribute Grammar - Example 2

- AG for the evaluation of a real number from its bit-string representation
Example: $110.101=6.625$
- $N \rightarrow L . R, L \rightarrow B L|B, R \rightarrow B R| B, B \rightarrow 0 \mid 1$
- $A S(N)=A S(R)=A S(B)=\{$ value $\uparrow:$ real $\}$, $A S(L)=\{$ length \uparrow : integer, value $\uparrow:$ real $\}$
(1) $N \rightarrow L . R\{N$.value $\uparrow:=L$.value $\uparrow+R$. value $\uparrow\}$
(2) $L \rightarrow B\{L$.value $\uparrow:=B$.value \uparrow; L.length $\uparrow:=1\}$
(3) $L_{1} \rightarrow B L_{2}\left\{L_{1}\right.$. length $\uparrow:=L_{2}$. length $\uparrow+1$;
L_{1}. value $\uparrow:=$ B. value $\uparrow * 2^{L_{2}}$.length $\uparrow+L_{2}$. value $\left.\uparrow\right\}$
(4) $R \rightarrow B\{R$.value $\uparrow:=B$.value $\uparrow / 2\}$
(5) $R_{1} \rightarrow B R_{2}\left\{R_{1}\right.$.value $\uparrow:=\left(B\right.$.value $\uparrow+R_{2}$.value $\left.\left.\uparrow\right) / 2\right\}$
(6) $B \rightarrow 0\{B$. value $\uparrow:=0\}$
(7) $B \rightarrow 1\{B$. value $\uparrow:=1\}$

