Syntax Analysis:

Context-free Grammars, Pushdown Automata and Parsing Part - 6

Y.N. Srikant

Department of Computer Science and Automation Indian Institute of Science

Bangalore 560012

NPTEL Course on Principles of Compiler Design

Outline of the Lecture

- What is syntax analysis? (covered in lecture 1)
- Specification of programming languages: context-free grammars (covered in lecture 1)
- Parsing context-free languages: push-down automata (covered in lectures 1 and 2)
- Top-down parsing: LL(1) parsing (covered in lectures 2 and 3)
- Recursive-descent parsing (covered in lecture 4)
- Bottom-up parsing: LR-parsing (continued)

DFA for Viable Prefixes - LR(0) Automaton

Construction of Sets of Canonical LR(0) Items

> void Set_of_item_sets $\left(G^{\prime}\right)\left\{/^{*} G^{\prime}\right.$ is the augmented grammar */ $C=\left\{\right.$ closure $\left.\left(\left\{S^{\prime} \rightarrow . S\right\}\right)\right\} ; /^{*} C$ is a set of item sets */ while (more item sets can be added to C) \{ for each item set $I \in C$ and each grammar symbol X $/^{*} \mathrm{X}$ is a grammar symbol, a terminal or a nonterminal */ if $((\operatorname{GOTO}(I, X) \neq \emptyset) \& \&(\operatorname{GOTO}(I, X) \notin C))$ $C=C \cup \operatorname{GOTO}(I, X)$
> \}
> \}

- Each set in C (above) corresponds to a state of a DFA (LR(0) DFA)
- This is the DFA that recognizes viable prefixes

Construction of an LR(0) Automaton - Example 1

State 0	State 3	State 6	State 9
S \rightarrow.E\#	T \rightarrow id.	$\mathrm{E} \rightarrow \mathrm{E}+$. ${ }^{\text {r }}$	$\mathrm{E} \rightarrow \mathrm{E}-\mathrm{T}$.
$\mathrm{E} \rightarrow$. $\mathrm{E}+\mathrm{T}$		$\mathrm{T} \rightarrow$. E)	
$\mathrm{E} \rightarrow$ E-T		T \rightarrow.id	
$\mathrm{E} \rightarrow$. T	State 4		
$\mathrm{T} \rightarrow$. E)	$\mathrm{T} \rightarrow$ (.E)	State 7	State 10
T \rightarrow.id	$\mathrm{E} \rightarrow . \mathrm{E}+\mathrm{T}$	$\mathrm{E} \rightarrow \mathrm{E} . \mathrm{T}$ T	$\mathrm{T} \rightarrow$ (E.)
	$\mathrm{E} \rightarrow$.E-T	$\mathrm{T} \rightarrow$. E)	$\mathrm{E} \rightarrow \mathrm{E} .+\mathrm{T}$
State 1	$\mathrm{E} \rightarrow$. T	T \rightarrow.id	$\mathrm{E} \rightarrow \mathrm{E} .-\mathrm{T}$
S \rightarrow E.\#	$\mathrm{T} \rightarrow$. E)		
$\mathrm{E} \rightarrow \mathrm{E.+T}$	T \rightarrow.id	State 8	State 11
$\mathrm{E} \rightarrow \mathrm{E} . \mathrm{T}$ T		$\underline{E} \rightarrow \mathrm{E}+\mathrm{T}$.	$\underline{T} \rightarrow$ (E).
	State 5		
State 2	S \rightarrow E\#.	indica	items
$\mathrm{E} \rightarrow \mathrm{T}$.			

Shift and Reduce Actions

- If a state contains an item of the form $[A \rightarrow \alpha$.] ("reduce item"), then a reduction by the production $A \rightarrow \alpha$ is the action in that state
- If there are no "reduce items" in a state, then shift is the appropriate action
- There could be shift-reduce conflicts or reduce-reduce conflicts in a state
- Both shift and reduce items are present in the same state (S-R conflict), or
- More than one reduce item is present in a state (R-R conflict)
- It is normal to have more than one shift item in a state (no shift-shift conflicts are possible)
- If there are no S-R or R-R conflicts in any state of an LR(0) DFA, then the grammar is $\operatorname{LR}(0)$, otherwise, it is not $\operatorname{LR}(0)$

LR(0) Parser Table - Example 1

STATE	ACTION							GOTO		
	+	-	$($	$)$	id	\#	S	E	T	
0			S 4		S 3			1	2	
1	S 6	S 7				S 5				

Construction of an LR(0) Parser Table - Example 1

STATE	ACTION						GOTO		
	+	-	$($)	id	\#	S	E	T
0			S4		S3			1	2
1	S6	S7				S5			
2	R4	R4	R4	R4	R4	R4			
3	R6	R6	R6	R6	R6	R6			
4			S4		S3			10	2
5	$\begin{aligned} & \text { R1 } \\ & a \subset 0 \end{aligned}$	$\begin{aligned} & \text { R1 } \\ & \mathrm{acc} \end{aligned}$	$\begin{aligned} & \mathrm{R} 1 \\ & \mathrm{acc} \end{aligned}$	$\begin{aligned} & \mathrm{R} 1 \\ & \mathrm{acc} \end{aligned}$	$\begin{aligned} & \mathrm{R} 1 \\ & \mathrm{acc} \end{aligned}$	$\begin{aligned} & \mathrm{R} 1 \\ & \mathrm{acc} \end{aligned}$			
6			S4		S3				8
7			S4		S3				9
8	R2	R2	R2	R2	R2	R2			
9	R3	R3	R3	R3	R3	R3			
10	S6	S7		$\begin{gathered} \mathrm{S} 1 \\ 1 \end{gathered}$					
11	R5	R5	R5	R5	R5	R5			

1. $S \rightarrow E \#$
2. $\mathrm{E} \rightarrow \mathrm{E}+\mathrm{T}$
3. $\mathrm{E} \rightarrow \mathrm{E}-\mathrm{T}$
4. $E \rightarrow T$
5. $\mathrm{T} \rightarrow(\mathrm{E})$
6. $T \rightarrow$ id

State 0	State 2
$S \rightarrow . E \#$	$E \rightarrow T$.
$E \rightarrow . E+T$	
$E \rightarrow . E-T$	State 3
$E \rightarrow . T$	$T \rightarrow$ id.
$T \rightarrow$ (E)	
$T \rightarrow$.id	
State 1.	State 6
$S \rightarrow$ E.\#	$E \rightarrow E+T$
$E \rightarrow$ E.+T	$T \rightarrow$.(E)
$E \rightarrow$ E.-T	$T \rightarrow$.id

$S \rightarrow$ E.\# $\quad E \rightarrow E+. T$ E \rightarrow E.-T $\quad \mathrm{T} \rightarrow$.id

State 4
$\mathrm{T} \rightarrow$ (.E) $\mathrm{E} \rightarrow . \mathrm{E}-\mathrm{T}$
$\mathrm{E} \rightarrow \mathrm{T}$
$\mathrm{T} \rightarrow$.(E)
State 8
$E \rightarrow E+T$.
State 5 State 9
$\mathrm{S} \rightarrow \mathrm{E} \mathrm{\#} . \quad \mathrm{E} \rightarrow \mathrm{E}-\mathrm{T}$.indicates closure items

LR(0) Automaton - Example 2

$$
\begin{array}{ll}
\text { 1. } S^{\prime} \rightarrow \mathrm{S} & \text { 2. } S \rightarrow a A S \\
\text { 3. } S \rightarrow c & 4 . A \rightarrow b a \\
\text { 5. } A \rightarrow S B & \text { 6. } B \rightarrow b A \\
\text { 7. } B \rightarrow S & \\
\hline
\end{array}
$$

Construction of an LR(0) Automaton - Example 2

LR(0) Parser Table - Example 2

Construction of an LR(0) Parser Table - Example 2

STATE	ACTION					GOTO		
	a	b	c	\$	S	A	B	
0	S2		S3		1			
1				R1 acc				
2	S2	S6	S3		8	4		
3	R3	R3	R3	R3				
4	S2		S3		5			
5	R2	R2	R2	R2				
6	S7							
7	R4	R4	R4	R4				
8	S2	S1	S3		12		9	
9	R5	R5	R5	R5				
10	S2	S6	S3		8	11		
11	R6	R6	R6	R6				
12	R7	R7	R7	R7				

1. $S^{\prime} \rightarrow S$
2. $\mathrm{S} \rightarrow \mathrm{aAS}$
3. $\mathrm{S} \rightarrow \mathrm{c}$
4. $\mathrm{A} \rightarrow \mathrm{ba}$
5. $A \rightarrow S B$
6. $\mathrm{B} \rightarrow \mathrm{bA}$
7. $\mathrm{B} \rightarrow \mathrm{S}$

State $0 \quad$ State 2
$\mathrm{S} \rightarrow \mathrm{a} . \mathrm{AS}$
$A \rightarrow$.ba
$A \rightarrow . S B$
$\mathrm{S} \rightarrow$.aAS
State 1
$\mathrm{S}^{\prime} \rightarrow \mathrm{s}$.
State 3
$\mathrm{s} \rightarrow \mathrm{c}$.

State 4
$\mathrm{S} \rightarrow \mathrm{aA} . \mathrm{S}$
$\mathrm{S} \rightarrow$.aAS
$\mathrm{S} \rightarrow$.c
State 5 $\mathrm{s} \rightarrow \mathrm{aAS}$.

State 6
$\mathrm{A} \rightarrow$ b.a
State 7
$\mathrm{A} \rightarrow$ ba.
State 9
$\mathrm{A} \rightarrow \mathrm{SB}$.
$B \rightarrow b A$.

State 10
$\mathrm{B} \rightarrow \mathrm{b} . \mathrm{A}$
$A \rightarrow$.ba
$A \rightarrow . S B$
$\mathrm{S} \rightarrow$.aAS
$\mathrm{S} \rightarrow$. c

State 12
$\mathrm{B} \rightarrow \mathrm{S}$.

State 8
$\mathrm{A} \rightarrow \mathrm{S} . \mathrm{B}$
$\mathrm{B} \rightarrow$.bA
$\mathrm{s} \rightarrow \mathrm{aAS}$
$\mathrm{s} \rightarrow . \mathrm{c}$
indicates kernel items

A Grammar that is not LR(0) - Example 1

State 0	State 2	State 5	State 8
$\mathrm{S} \rightarrow$.E	$\mathrm{E} \rightarrow \mathrm{T}$.	$\mathrm{E} \rightarrow \mathrm{E}+$. T	$\mathrm{E} \rightarrow \mathrm{E}-\mathrm{T}$.
$\mathrm{E} \rightarrow$. $\mathrm{E}+\mathrm{T}$		$\mathrm{T} \rightarrow$.(E)	
$\mathrm{E} \rightarrow$.E-T		$\mathrm{T} \rightarrow$.id	State 9
$\mathrm{E} \rightarrow$. T	State 3		State 9 $\mathrm{T} \rightarrow$ (E)
$\mathrm{T} \rightarrow$.(E)	$\mathrm{T} \rightarrow$ id.	State 6	$\mathrm{T} \rightarrow(\mathrm{E} .)$ $E \rightarrow E .+T$
$\mathrm{T} \rightarrow$.id		$\begin{aligned} & \mathrm{E} \rightarrow \mathrm{E} . \mathrm{T} \\ & \mathrm{~T} \rightarrow .(\mathrm{E}) \end{aligned}$	$\begin{aligned} & \mathrm{E} \rightarrow \mathrm{E.+T} \\ & \mathrm{E} \rightarrow \mathrm{E} .-\mathrm{T} \end{aligned}$
State 1	State 4	$\mathrm{T} \rightarrow$.id	
$\mathrm{S} \rightarrow \mathrm{E}$.	$\mathrm{T} \rightarrow$ (.E)		
$\mathrm{E} \rightarrow \mathrm{E}+$.	$\mathrm{E} \rightarrow$. $\mathrm{E}+\mathrm{T}$	$\mathrm{E} \rightarrow \mathrm{E}+\mathrm{T} .$	$\frac{\text { State } 10}{T \rightarrow(E) .}$
$\mathrm{E} \rightarrow \mathrm{E} .-\mathrm{T}$	$\mathrm{E} \rightarrow$.E-T		T \rightarrow (E).
shift-reduce conflicts in state 1	$\begin{aligned} & \mathrm{E} \rightarrow . \mathrm{T} \\ & \mathrm{~T} \rightarrow .(\mathrm{E}) \\ & \mathrm{T} \rightarrow \text {.id } \end{aligned}$	indicates closure items indicates kernel items	

$$
\begin{aligned}
& \text { follow }(\mathrm{S})=\{\$\} \text {, where } \$ \text { is EOF } \\
& \text { Reduction on } \$ \text {, and shifts on + and }- \text {, will resolve the conflicts } \\
& \text { This is similar to having an end marker such as \# }
\end{aligned}
$$

Grammar is not LR(0), but is $\operatorname{SLR}(1)$

SLR(1) Parsers

- If the grammar is not $\mathrm{LR}(0)$, we try to resolve conflicts in the states using one look-ahead symbol
- Example: The expression grammar that is not $\mathrm{LR}(0)$ The state containing the items $[T \rightarrow F$.$] and [T \rightarrow F . * T]$ has S-R conflicts
- Consider the reduce item $[T \rightarrow F$.] and the symbols in FOLLOW (T)
- $\operatorname{FOLLOW}(T)=\{+),, \$\}$, and reduction by $T \rightarrow F$ can be performed on seeing one of these symbols in the input (look-ahead), since shift requires seeing $*$ in the input
- Recall from the definition of $\operatorname{FOLLOW}(T)$ that symbols in $\operatorname{FOLLOW}(T)$ are the only symbols that can legally follow T in any sentential form, and hence reduction by $T \rightarrow F$ when one of these symbols is seen, is correct
- If the S-R conflicts can be resolved using the FOLLOW set, the grammar is said to be $\operatorname{SLR}(1)$

A Grammar that is not $\operatorname{LR}(0)$ - Example 2

State 0	State 2	State 5	
$\mathrm{S} \rightarrow$.E	$\mathrm{E} \rightarrow \mathrm{T}$.	F \rightarrow id.	State 8
$\mathrm{E} \rightarrow . \mathrm{E}+\mathrm{T}$			$\mathrm{F} \rightarrow$ (E.)
$\mathrm{E} \rightarrow$. T	State 3	State 6	$\mathrm{E} \rightarrow \mathrm{E}+$.
$\mathrm{T} \rightarrow$. ${ }^{*} \mathrm{~T}$	T \rightarrow F.*T	$\mathrm{E} \rightarrow \mathrm{E}+$. T	
$\mathrm{T} \rightarrow$. F	$\mathrm{T} \rightarrow \mathrm{F}$.	$\mathrm{T} \rightarrow$. ${ }^{*} \mathrm{~T}$	
$\mathrm{F} \rightarrow$. E)	Shift-reduce	$\mathrm{T} \rightarrow$. F	State 9
$\mathrm{F} \rightarrow$.id	conflict	$\mathrm{F} \rightarrow$.(E)	$\mathrm{E} \rightarrow \mathrm{E}+\mathrm{T}$.
		$\mathrm{F} \rightarrow$.id	
State 1	State 4		
$\mathrm{S} \rightarrow \mathrm{E}$.	$\mathrm{F} \rightarrow$ (.E)	State 7	$\underline{\text { State } 10}$
$\mathrm{E} \rightarrow \mathrm{E}+$.	$E \rightarrow . E+T$	$\underline{T \rightarrow F^{*}} . \mathrm{T}$	$\mathrm{E} \rightarrow \mathrm{F}^{\star} \mathrm{T}$.
Shift-reduce conflict	$\mathrm{E} \rightarrow$. T	$\mathrm{T} \rightarrow$. F^{*} T	
	$\mathrm{T} \rightarrow$. $\mathrm{F}^{*} \mathrm{~T}$	$\mathrm{T} \rightarrow$. F	State 11
	$\mathrm{T} \rightarrow$. F	$\mathrm{F} \rightarrow$. E)	$F \rightarrow(E)$.
	$\mathrm{F} \rightarrow$.(E)	$\mathrm{F} \rightarrow$.id	F (E).
	$\mathrm{F} \rightarrow$.id		

[^0]Grammar is not LR(0), but is $\operatorname{SLR}(1)$

Construction of an SLR(1) Parsing Table

Let $C=\left\{I_{0}, I_{1}, \ldots, I_{i}, \ldots, I_{n}\right\}$ be the canonical $\operatorname{LR}(0)$ collection of items, with the corresponding states of the parser being $0,1, \ldots, i, \ldots, n$ Without loss of generality, let 0 be the initial state of the parser (containing the item $\left[S^{\prime} \rightarrow . S\right]$)
Parsing actions for state i are determined as follows

1. If $\left([A \rightarrow \alpha . a \beta] \in I_{i}\right) \& \&\left([A \rightarrow \alpha a . \beta] \in I_{j}\right)$
set ACTION[i, a] = shift $j /^{*} a$ is a terminal symbol */
2. If $\left([A \rightarrow \alpha.] \in I_{i}\right)$
set ACTION[i, a] = reduce $A \rightarrow \alpha$, for all $a \in$ follow (A)
3. If $\left(\left[S^{\prime} \rightarrow S.\right] \in l_{i}\right)$ set ACTION[i, \$] = accept
$\mathrm{S}-\mathrm{R}$ or $\mathrm{R}-\mathrm{R}$ conflicts in the table imply grammar is not $\operatorname{SLR}(1)$
4. If $\left([A \rightarrow \alpha . A B] \in I_{i}\right) \& \&\left([A \rightarrow \alpha A . \beta] \in I_{j}\right)$
set GOTO[i, A] $=j /^{*} A$ is a nonterminal symbol */
All other entries not defined by the rules above are made error

A Grammar that is not $\mathrm{LR}(0)$ - Example 3

Grammar
$S^{\prime} \rightarrow S, S$

State 0	State 3
S' \rightarrow. ${ }^{\text {S }}$	$\mathrm{s} \rightarrow \mathrm{aS} . \mathrm{b}$
$\mathrm{S} \rightarrow$.aSb	
$\mathrm{S} \rightarrow$.	
State 1	State 4
$\mathbf{S} \rightarrow \mathbf{S}$.	$\mathbf{S} \rightarrow$ aSb .

State 2

	a	b	$\$$	S
0	S 2	reduce $\mathrm{S} \rightarrow \varepsilon$	reduce $\mathrm{S} \rightarrow \varepsilon$	1
1			accept	
2	S 2	reduce $\mathrm{S} \rightarrow \varepsilon$	reduce $\mathrm{S} \rightarrow \varepsilon$	3
3		S 4		
4		reduce $\mathrm{S} \rightarrow \mathrm{aSb}$	reduce $\mathrm{S} \rightarrow \mathrm{aSb}$	

$\mathrm{S} \rightarrow \mathrm{a} . \mathrm{Sb}$
$\mathrm{S} \rightarrow$.aSb $\mathbf{S} \rightarrow$.
indicates closure items
shift-reduce conflict in states 0,2
indicates kernel items

A Grammar that is not $\operatorname{SLR}(1)$ - Example 1

Grammar: S' \rightarrow S,$S \rightarrow a S b, S \rightarrow a b, S \rightarrow \varepsilon$		follow $(S)=\{\$, b\}$ State 0: Reduction on $\$$ and b, by $S \rightarrow \varepsilon$, and shift on a resolves conflicts State 2: S-R conflict on b still remains				
$\begin{aligned} & \frac{\text { State } \mathbf{0}}{\mathbf{S}^{\prime} \rightarrow . \mathbf{S}} \\ & \mathrm{S} \rightarrow . \mathrm{aSb} \\ & \mathrm{~S} \rightarrow . \mathrm{ab} \\ & \mathrm{~S} \rightarrow . \end{aligned}$	$\frac{\text { State } 3}{S \rightarrow a S . b}$					
	State 4 $\mathrm{S} \rightarrow \mathrm{aSb}$.		a	b	\$	S
		0	S2	R: $S \rightarrow \varepsilon$	R: $S \rightarrow \varepsilon$	1
		1			accept	
$\frac{\text { State } 1}{S^{\prime} \rightarrow \text { S. }}$	$\frac{\text { State } 5}{S \rightarrow a b}$	2	S2	S5, R: $\mathrm{S} \rightarrow \varepsilon$	$\mathrm{R}: \mathrm{S} \rightarrow \varepsilon$	3
		3		S4		
		4		$R: S \rightarrow a S b$	$\mathrm{R}: \mathrm{S} \rightarrow \mathrm{aSb}$	
	shift-reduce conflict in states 0, 2	5		$\mathrm{R}: \mathrm{S} \rightarrow \mathrm{ab}$	$\mathrm{R}: \mathrm{S} \rightarrow \mathrm{ab}$	
$\frac{\text { State } 2}{S \rightarrow \text { a.Sb }}$						
$\mathrm{S} \rightarrow$ a.b				1	$\xrightarrow{\mathrm{b}} 4$	
$\begin{aligned} & \mathrm{S} \rightarrow . \mathrm{aSb} \\ & \mathrm{~S} \rightarrow . \mathrm{ab} \\ & \mathrm{~S} \rightarrow . \end{aligned}$	Grammar is neither LR(0) nor SLR(1)				\int_{a}^{b}	

A Grammar that is not $\operatorname{SLR}(1)$ - Example 2

Grammar	State 0	State 2	State 6
$S^{\prime} \rightarrow$ S	$\mathrm{S}^{\prime} \rightarrow$. ${ }^{\text {S }}$	$\mathrm{S} \rightarrow \mathrm{L} .=\mathrm{R}$	S \rightarrow L= R
$S \rightarrow L=R$	$S \rightarrow$.L=R	$\mathrm{R} \rightarrow \mathrm{L}$.	$\mathrm{R} \rightarrow$.L
$\mathrm{S} \rightarrow \mathrm{R}$	$\mathrm{S} \rightarrow$. R	shift-reduce	$\mathrm{L} \rightarrow$.*R
$L \rightarrow$ *R	$\mathrm{L} \rightarrow$.*R	conflict	L \rightarrow.id
$L \rightarrow$ id	$L \rightarrow$.id		
$\mathrm{R} \rightarrow \mathrm{L}$	R \rightarrow.L	State 4	State 7
		$\mathrm{L} \rightarrow$ *.R	$L \rightarrow$ *R.
	State 1	$\mathrm{R} \rightarrow$. L	
Grammar is neither LR(0)	$\mathrm{S}^{\prime} \rightarrow \mathbf{S}$.	$\mathrm{L} \rightarrow$.*R	State 8
nor SLR(1)		$L \rightarrow$.id	$\mathrm{R} \rightarrow \mathrm{L}$.
	State 3		
	$\mathrm{S} \rightarrow \mathrm{R}$.	State 5	State 9
		$L \rightarrow$ id.	$\mathrm{S} \rightarrow \mathrm{L}=\mathrm{R}$.

Follow(R) = \{\$,=\} does not resolve S-R conflict

The Problem with SLR(1) Parsers

- $\operatorname{SLR}(1)$ parser construction process does not remember enough left context to resolve conflicts
- In the " $L=R$ " grammar (previous slide), the symbol ' $=$ ' got into follow (R) because of the following derivation:

$$
S^{\prime} \Rightarrow S \Rightarrow L=R \Rightarrow L=L \Rightarrow L=i d \Rightarrow * R=i d \Rightarrow \ldots
$$

- The production used is $L \rightarrow * R$
- The following rightmost derivation in reverse does not exist (and hence reduction by $R \rightarrow L$ on ' $=$ ' in state 2 is illegal) $i d=i d \Leftarrow L=i d \Leftarrow R=i d .$.
- Generalization of the above example
- In some situations, when a state i appears on top of the stack, a viable prefix $\beta \alpha$ may be on the stack such that βA cannot be followed by ' a ' in any right sentential form
- Thus, the reduction by $A \rightarrow \alpha$ would be invalid on ' a '
- In the above example, $\beta=\epsilon, \alpha=L$, and $A=R$; L cannot be reduced to R on ' $=$ ', since it would lead to the above illegal derivation sequence
- $\mathrm{LR}(1)$ items are of the form $[A \rightarrow \alpha . \beta, a]$, a being the "lookahead" symbol
- Lookahead symbols have no part to play in shift items, but in reduce items of the form $[A \rightarrow \alpha ., a]$, reduction by $A \rightarrow \alpha$ is valid only if the next input symbol is ' a '
- An $\mathrm{LR}(1)$ item $[A \rightarrow \alpha . \beta, a]$ is valid for a viable prefix γ, if there is a derivation $S \Rightarrow_{r m}^{*} \delta A w \Rightarrow_{r m} \delta \alpha \beta w$, where, $\gamma=\delta \alpha, a=\operatorname{first}(w)$ or $w=\epsilon$ and $a=\$$
- Consider the grammar: $S^{\prime} \rightarrow S, S \rightarrow a S b \mid \epsilon$
- [S S a.Sb, \$] is valid for the VP $a, S^{\prime} \Rightarrow S \Rightarrow a S b$
- $[S \rightarrow a . S b, b]$ is valid for the VP $a a$, $S^{\prime} \Rightarrow S \Rightarrow a S b \Rightarrow a a S b b$
- [$S \rightarrow$., \$] is valid for the VP $\epsilon, S^{\prime} \Rightarrow S \Rightarrow \epsilon$
- [$S \rightarrow a S b$., b] is valid for the VP aaSb, $S^{\prime} \Rightarrow S \Rightarrow a S b \Rightarrow a a S b b$

LR(1) Grammar - Example 1

Closure of a Set of LR(1) Items

Itemset closure(I)\{ /* I is a set of LR(1) items */
while (more items can be added to I) \{ for each item $[A \rightarrow \alpha . B \beta, a] \in I\{$
for each production $B \rightarrow \gamma \in G$ for each symbol $b \in \operatorname{first}(\beta a)$
if (item $[B \rightarrow . \gamma, b] \notin I$) add item $[B \rightarrow . \gamma, b]$ to $/$
\}
return /
\}

GOTO set computation

Itemset GOTO($I, X)\left\{{ }^{*}\right.$ I is a set of $\operatorname{LR}(1)$ items X is a grammar symbol, a terminal or a nonterminal */ Let $I^{\prime}=\{[A \rightarrow \alpha X . \beta, a] \mid[A \rightarrow \alpha . X \beta, a] \in I\} ;$ return (closure(I^{\prime}))

	State 0	State 1	State 2	State 4
Grammar	$\mathbf{s}^{\prime} \rightarrow$. S , S	$\mathrm{s}^{\prime} \rightarrow$ S., \$	s \rightarrow a.sb, \$	$s \rightarrow a .5 b, b$
$\mathrm{S}^{\prime} \rightarrow \mathrm{S}$	s \rightarrow.aSb, \$		$\mathrm{s} \rightarrow$.aSb, b	$s \rightarrow$.asb, b
$\bigcirc \rightarrow \mathrm{aSb} \mid \varepsilon$	$s \rightarrow$. , \$		$s \rightarrow ., \mathrm{b}$	$s \rightarrow$., b

Construction of Sets of Canonical of LR(1) Items

> void Set_of_item_sets $\left(G^{\prime}\right)\left\{\right.$ / $^{*} \mathrm{G}^{\prime}$ is the augmented grammar */ $C=\left\{\operatorname{closure}\left(\left\{S^{\prime} \rightarrow . S, \$\right\}\right)\right\} /^{*} C$ is a set of $\operatorname{LR}(1)$ item sets */ while (more item sets can be added to C) \{
> for each item set $I \in C$ and each grammar symbol X
> $/^{*} \mathrm{X}$ is a grammar symbol, a terminal or a nonterminal */ if $((\operatorname{GOTO}(I, X) \neq \emptyset) \& \&(G O T O(I, X) \notin C))$ $C=C \cup \operatorname{GOTO}(I, X)$
> \}
> \}

- Each set in C (above) corresponds to a state of a DFA (LR(1) DFA)
- This is the DFA that recognizes viable prefixes

LR(1) DFA Construction - Example 1

Construction of an LR(1) Parsing Table

Let $C=\left\{I_{0}, I_{1}, \ldots, I_{i}, \ldots, I_{n}\right\}$ be the canonical $\operatorname{LR}(1)$ collection of items, with the corresponding states of the parser being $0,1, \ldots, i, \ldots, n$ Without loss of generality, let 0 be the initial state of the parser (containing the item $\left[S^{\prime} \rightarrow . S, \$\right]$)
Parsing actions for state i are determined as follows

1. If $\left([A \rightarrow \alpha . a \beta, b] \in I_{i}\right) \& \&\left([A \rightarrow \alpha a . \beta, b] \in I_{j}\right)$ set ACTION[i, a] $=$ shift $j /^{*} a$ is a terminal symbol */
2. If $\left([A \rightarrow \alpha ., a] \in I_{i}\right)$ set ACTION[i, a] = reduce $A \rightarrow \alpha$
3. If $\left(\left[S^{\prime} \rightarrow S\right.\right.$., $\left.\left.\$\right] \in l_{i}\right)$ set ACTION[i, \$] = accept
$\mathrm{S}-\mathrm{R}$ or $\mathrm{R}-\mathrm{R}$ conflicts in the table imply grammar is not $\mathrm{LR}(1)$
4. If $\left([A \rightarrow \alpha \cdot \boldsymbol{A} \beta, a] \in \boldsymbol{I}_{i}\right) \& \&\left([\boldsymbol{A} \rightarrow \alpha \boldsymbol{A} . \beta, a] \in \boldsymbol{I}_{j}\right)$ set GOTO[i, A] $=j /^{*} A$ is a nonterminal symbol */
All other entries not defined by the rules above are made error

[^0]: follow(S) $=\{\$\}$, Reduction on \$ and shift on + , eliminates conflicts follow $(T)=\{\$),+$,$\} , where \$$ is EOF
 Reduction on \$,), and + , and shift on *, eliminates conflicts

