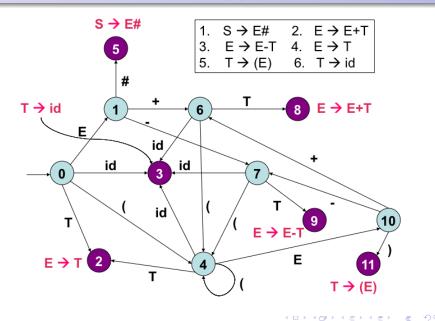
Syntax Analysis:

Context-free Grammars, Pushdown Automata and Parsing Part - 6

Y.N. Srikant

Department of Computer Science and Automation Indian Institute of Science Bangalore 560 012


NPTEL Course on Principles of Compiler Design

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ○ ○ ○

- What is syntax analysis? (covered in lecture 1)
- Specification of programming languages: context-free grammars (covered in lecture 1)
- Parsing context-free languages: push-down automata (covered in lectures 1 and 2)
- Top-down parsing: LL(1) parsing (covered in lectures 2 and 3)
- Recursive-descent parsing (covered in lecture 4)
- Bottom-up parsing: LR-parsing (continued)

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

DFA for Viable Prefixes - LR(0) Automaton

void Set_of_item_sets(G'){ /* G' is the augmented grammar */ C = {closure({S' → .S})};/* C is a set of item sets */ while (more item sets can be added to C) { for each item set $I \in C$ and each grammar symbol X /* X is a grammar symbol, a terminal or a nonterminal */ if ((GOTO(I, X) ≠ Ø) && (GOTO(I, X) ∉ C)) C = C ∪ GOTO(I, X) }

- Each set in C (above) corresponds to a state of a DFA (LR(0) DFA)
- This is the DFA that recognizes viable prefixes

イロト 不得 とくほ とくほ とうほ

Construction of an LR(0) Automaton - Example 1

<u>State 0</u> S → .E# E → .E+T E → .E-T	<u>State 3</u> T → id.	State 6 E → E+.T T → .(E) T → .id	<u>State 9</u> E → E-T.
$E \rightarrow .T$ $T \rightarrow .(E)$ $T \rightarrow .id$ <u>State 1</u> $S \rightarrow E.#$	State 4 T → (.E) E → .E+T E → .E-T E → .T	State 7 E → ET T → .(E) T → .id	<u>State 10</u> T → (E.) E → E.+T E → ET
S → E.+T E → ET	T → .(E) T → .id	<u>State 8</u> E → E+T.	<u>State 11</u> T → (E).
<u>State 2</u> E → T.	<u>State 5</u> S → E#.	 indicates clo indicates ke 	
	Y.N. Srikant	Parsing	

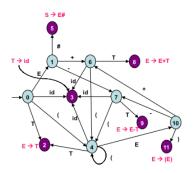
-21

Shift and Reduce Actions

- If a state contains an item of the form [A → α.] ("reduce item"), then a reduction by the production A → α is the action in that state
- If there are no "reduce items" in a state, then shift is the appropriate action
- There could be shift-reduce conflicts or reduce-reduce conflicts in a state
 - Both shift and reduce items are present in the same state (S-R conflict), or
 - More than one reduce item is present in a state (R-R conflict)
 - It is normal to have more than one shift item in a state (no shift-shift conflicts are possible)

<ロ> (四) (四) (三) (三) (三)

If there are no S-R or R-R conflicts in any state of an LR(0)
 DFA, then the grammar is LR(0), otherwise, it is not LR(0)

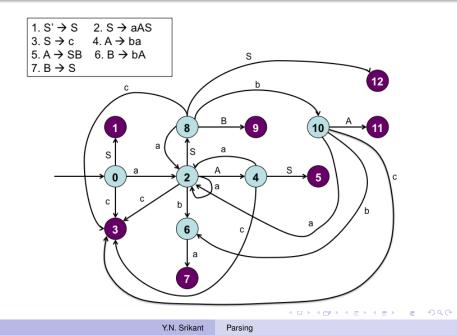

STATE			ACT	ION			(GOTC)	
	+	-	()	id	#	S	Е	Т	
0			S4		S3			1	2	
1	S6	S7				S5				
2	R4	R4	R4	R4	R4	R4				
3	R6	R6	R6	R6	R6	R6				
4			S4		S3			10	2	
5	R1	R1	R1	R1	R1	R1				
	acc	acc	acc	acc	acc	acc				
6			S4		S3				8	
7			S4		S3				9	
8	R2	R2	R2	R2	R2	R2				
9	R3	R3	R3	R3	R3	R3				
10	S6	S7		S11						
11	R5	R5	R5	R5	R5	R5				

1.
$$S \rightarrow E\#$$

2. $E \rightarrow E+T$
3. $E \rightarrow E-T$
4. $E \rightarrow T$
5. $T \rightarrow (E)$
6. $T \rightarrow id$

・四・・ モト ・ モト

Construction of an LR(0) Parser Table - Example 1


STATE		_	ACT	ION		_		GOTO	
	+		()	id	#	s	Е	т
0			S4		S3			1	2
1	S6	S7				S5			
2	R4	R4	R4	R4	R4	R4			
3	R6	R6	R6	R6	R6	R6			
4			S4		S3			10	2
5	R1 acc	R1 acc	R1 acc	R1 acc	R1 acc	R1 acc			
6			S4		S3				8
7			S4		S3				9
8	R2	R2	R2	R2	R2	R2			
9	R3	R3	R3	R3	R3	R3			
10	S6	S7		S1 1					
11	R5	R5	R5	R5	R5	R5			

1.	$S \rightarrow E\#$
2.	$E \rightarrow E+T$
3.	$E \rightarrow E-T$
4.	$E \rightarrow T$
5.	$T \rightarrow (E)$
6.	T → id

State 0 $S \rightarrow .E#$ $E \rightarrow .E+T$ $E \rightarrow .E-T$ $E \rightarrow .T$	<u>State 2</u> E → T. <u>State 3</u> T → id.	$\frac{\text{State 4}}{T \rightarrow (.E)}$ E → .E+T E → .E-T E → .T	<u>State 7</u> E → ET T → .(E) T → .id	<u>State 10</u> T → (E.) E → E.+T E → ET	<u>State 11</u> T → (E).
T → .(E) T → .id	1 7 14.	T → .(E) T → .id	<u>State 8</u> E → E+T.	indicates	s closure items
<u>State 1</u> S → E.# E → E.+T E → ET	<u>State 6</u> E → E+.T T → .(E) T → .id	<u>State 5</u> S → E#.	<u>State 9</u> E → E-T.	 indicates 	s kernel items

LR(0) Automaton - Example 2

Construction of an LR(0) Automaton - Example 2

<u>State 0</u> S' → .S S → .aAS	<u>State 3</u> S → c.	<u>State</u> A →		$\frac{\text{State 10}}{\text{B} \rightarrow \text{b.A}}$
S → .c	<u>State 4</u> S → aA.S			$A \rightarrow .SB$ $S \rightarrow .aAS$
<u>State 1</u> S' → S.	S → .aAS S → .c	$\begin{array}{c} A \neq i \\ B \neq i \\ B \neq i \end{array}$.bA	S →.c
<u>State 2</u> S → a.AS	<u>State 5</u> S → aAS.	s → . s → .		<u>State 11</u> B → bA.
$A \rightarrow .ba$ $A \rightarrow .SB$ $S \rightarrow .aAS$	<u>State 6</u> A → b.a	<u>State</u> A → S		<u>State 12</u> B → S.
 S → .c indicates cl indicates ke 	osure items ernel items	1. S' \rightarrow S 4. A \rightarrow ba 6. B \rightarrow bA	0	3. S → c
			< □ ► <	

Y.N. Srikant

LR(0) Parser Table - Example 2

STATE		ACT	ION			GOTO	
	а	b	с	\$	S	А	В
0	S2		S3		1		
1				R1			
				acc			
2	S2	S6	S3		8	4	
3	R3	R3	R3	R3			
4	S2		S3		5		
5	R2	R2	R2	R2			
6	S7						
7	R4	R4	R4	R4			
8	S2	S10	S3		12		9
9	R5	R5	R5	R5			
10	S2	S6	S3		8	11	
11	R6	R6	R6	R6			
12	R7	R7	R7	R7			

1. S'
$$\rightarrow$$
 S
2. S \rightarrow aAS
3. S \rightarrow c
4. A \rightarrow ba
5. A \rightarrow SB
6. B \rightarrow bA
7. B \rightarrow S

イロト イロト イモト イモト

2

Y.N. Srikant

Construction of an LR(0) Parser Table - Example 2

STATE		ACT	ION			GOTO)				
	а	b	с	\$	s	A	В			s	
0	S2		S3		1			c		b	12
1				R1					\checkmark		
				acc							
2	S2	S6	S3		8	4		Ū /		9	
3	R3	R3	R3	R3				s] ª(Îs _a_		
4	S2		S3		5			*	A A	Ss	
5	R2	R2	R2	R2					AN a	4	•) \•
6	S7							c c			
7	R4	R4	R4	R4					Č	X	₃//°
8	S2	S1 0	S3		12		9	11	6	$2 \sim$	
9	R5	R5	R5	R5				(* /		
10	S2	S6	S3		8	11		$\backslash \backslash$			
11	R6	R6	R6	R6					<u> </u>		
12	R7	R7	R7	R7							
1. S' \rightarrow 2. S \rightarrow a 3. S \rightarrow c 4. A \rightarrow b 5. A \rightarrow S 6. B \rightarrow b 7. B \rightarrow S	AS c a B B A			S' S S St	$\frac{\text{ate 0}}{\rightarrow .S}$ → .aA → .c $\frac{\text{ate 1}}{\rightarrow S}$	S	State 2 S → a.AS A → .ba A → .SB S → .aAS S → .c State 3 S → c.	$\frac{\text{State 4}}{\text{S} \rightarrow \text{aA.S}}$ $\frac{\text{S} \rightarrow \text{.aAS}}{\text{S} \rightarrow \text{.c}}$ $\frac{\text{State 5}}{\text{S} \rightarrow \text{aAS.}}$	<u>State 6</u> A → b.a <u>State 7</u> A → ba. <u>State 9</u> A → SB.	$\begin{array}{c} \underline{State \ 8}\\ A \rightarrow S.B\\ B \rightarrow .bA\\ B \rightarrow .S\\ S \rightarrow .aAS\\ S \rightarrow .c\\ \hline \underline{State \ 11}\\ B \rightarrow bA. \end{array}$	$\begin{array}{l} \begin{array}{c} \text{State 10} \\ \text{B} \rightarrow \text{b.A} \\ \text{A} \rightarrow \text{.ba} \\ \text{A} \rightarrow \text{.sB} \\ \text{S} \rightarrow \text{.aAS} \\ \text{S} \rightarrow \text{.c} \end{array}$

indicates closure items

indicates kernel items

ヨト・モヨト

=

Y.N. Srikant

Parsing

A Grammar that is not LR(0) - Example 1

<u>State 0</u> S → .E E → .E+T	<u>State 2</u> E → T.	<u>State 5</u> E → E+.T T → .(E)	<u>State 8</u> E → E-T.
$E \rightarrow .E-T$ $E \rightarrow .T$ $T \rightarrow .(E)$ $T \rightarrow .id$	<u>State 3</u> T → id.	T → .id State 6 E → ET T → .(E)	<u>State 9</u> T → (E.) E → E.+T E → ET
State 1	State 4	T → .id	
S → E. E → E.+T E → ET	T → (.E) E → .E+T E → .E-T	<u>State 7</u> E → E+T.	<u>State 10</u> T → (E).
shift-reduce conflicts in state 1	E → .T T → .(E) T → .id	 indicates closure indicates kernel 	

follow(S) = $\{$, where is EOF Reduction on , and shifts on + and -, will resolve the conflicts This is similar to having an end marker such as # Grammar is not LR(0), but is SLR(1)

ト・モニト

SLR(1) Parsers

- If the grammar is not LR(0), we try to resolve conflicts in the states using one look-ahead symbol
- Example: The expression grammar that is not LR(0) The state containing the items [T → F.] and [T → F. * T] has S-R conflicts
 - Consider the reduce item $[T \rightarrow F.]$ and the symbols in *FOLLOW*(*T*)
 - FOLLOW(T) = {+,),\$}, and reduction by T → F can be performed on seeing one of these symbols in the input (look-ahead), since shift requires seeing * in the input
 - Recall from the definition of FOLLOW(T) that symbols in FOLLOW(T) are the only symbols that can legally follow T in any sentential form, and hence reduction by $T \rightarrow F$ when one of these symbols is seen, is correct
 - If the S-R conflicts can be resolved using the FOLLOW set, the grammar is said to be SLR(1)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

A Grammar that is not LR(0) - Example 2

<u>State 0</u> S → .E E → .E+T	<u>State 2</u> E → T.	<u>State 5</u> F → id.	<u>State 8</u> F → (E.)
E → .T T → .F*T T → .F	$\frac{\text{State 3}}{T \rightarrow F.*T}$ $T \rightarrow F.$	<u>State 6</u> E → E+.T T → .F*T	E → E.+T
F → .(E) F → .id	Shift-reduce conflict	T → .F F → .(E) F → .id	<u>State 9</u> E → E+T.
<u>State 1</u> S → E. E → E.+T Shift-reduce	$\frac{\text{State 4}}{F \rightarrow (.E)}$ E → .E+T E → .T	<u>State 7</u> T → F*.T T → .F*T	<u>State 10</u> E → F*T.
conflict	T → .F*T T → .F F → .(E) F → .id	$T \rightarrow .F$ F $\rightarrow .(E)$ F $\rightarrow .id$	<u>State 11</u> F → (E).

follow(S) = {\$}, Reduction on \$ and shift on +, eliminates conflicts follow(T) = {\$,), +}, where \$ is EOF Reduction on \$,), and +, and shift on *, eliminates conflicts

Grammar is not LR(0), but is SLR(1) Let $C = \{I_0, I_1, ..., I_i, ..., I_n\}$ be the canonical LR(0) collection of items, with the corresponding states of the parser being 0, 1, ..., i, ..., n Without loss of generality, let 0 be the initial state of the parser (containing the item $[S' \rightarrow .S]$) Parsing actions for state *i* are determined as follows 1. If $([A \rightarrow \alpha . a\beta] \in I_i)$ && $([A \rightarrow \alpha a . \beta] \in I_i)$ set ACTION[i, a] = *shift j* /* *a* is a terminal symbol */ 2. If $([A \rightarrow \alpha] \in I_i)$ set ACTION[i, a] = reduce $A \rightarrow \alpha$, for all $a \in follow(A)$ 3. If $([S' \rightarrow S.] \in I_i)$ set ACTION[i, \$] = accept S-R or R-R conflicts in the table imply grammar is not SLR(1) 4. If $([A \rightarrow \alpha.A\beta] \in I_i)$ && $([A \rightarrow \alpha A.\beta] \in I_i)$ set GOTO[i, A] = i / A is a nonterminal symbol */ All other entries not defined by the rules above are made error

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ●

A Grammar that is not LR(0) - Example 3

Grammar S' \rightarrow S, S \rightarrow aSb, S $\rightarrow \epsilon$			follow(S	5) = {\$, b}	•
State 0 State 3		а	b	\$	S
$\overline{S' \rightarrow .S}$ $\overline{S \rightarrow aS.b}$ $S \rightarrow .aSb$	0	S2	reduce S → ε	reduce S → ε	1
$S \rightarrow .$	1			accept	
	2	S2	reduce S → ε	reduce S → ε	3
$\begin{array}{llllllllllllllllllllllllllllllllllll$	3		S4		
0 / 0. 0 / aob.	4		reduce S → aSb	reduce S → aSb	
State 2 $S \rightarrow a.Sb$ $S \rightarrow .aSb$ $S \rightarrow .aSb$ $S \rightarrow .$ indicates closure itemsindicates kernel items		1 s 0	3 s a 2)a n	rammar is ot LR(0), but SLR(1)

Y.N. Srikant

Parsing

=

A Grammar that is not SLR(1) - Example 1

Grammar: S' \rightarrow S, S \rightarrow aSb, S \rightarrow ab, S $\rightarrow \epsilon$		Sta	te 0: F	= {\$, b} Reduction on \$ a resolves conflict		and
$\begin{array}{cc} \underline{State \ 0} \\ S' \rightarrow .S \end{array} \qquad \begin{array}{c} \underline{State \ 3} \\ S \rightarrow aS.b \end{array}$			ite 2: 5	S-R conflict on b	still remains	
S → .aSb			а	b	\$	S
S → .ab	State 4	0	S2	R: S → ε	R: S → ε	1
s→.	S → aSb.	1			accept	
		2	S2	S5, R: S → ε	R: S → ε	3
State 1	<u>State 5</u> S → ab.	3		S4		
S' → S.		4		R: S → aSb	R: S → aSb	
	shift-reduce	5		R: S → ab	R: S → ab	
<u>State 2</u> S → a.Sb	conflict in states 0, 2					
S → a.b						
S → .aSb S → .ab S → .	Grammar is neither LR(0) nor SLR(1)				s 2 b a 5	

Y.N. Srikant

Parsing

くつわえ くさん くちん

=

A Grammar that is not SLR(1) - Example 2

$\frac{\text{Grammar}}{S' \rightarrow S}$ S → L=R S → R L → *R L → id	<u>State 0</u> S' → .S S → .L=R S → .R L → .*R L → .id	State 2 S → L .=R R → L . shift-reduce conflict	<u>State 6</u> S → L=.R R → .L L → .*R L → .id
R→L	R → .L State 1	<u>State 4</u> L → *.R R → .L	<u>State 7</u> L → *R.
Grammar is neither LR(0) nor SLR(1)	<mark>s' →s</mark> .	L → .*R L → .id	<u>State 8</u> R → L .
	<u>State 3</u> S → R.	<u>State 5</u> L → id.	<u>State 9</u> S → L=R.

Follow(R) = {\$,=} does not resolve S-R conflict

Parsing

くほとう キャン・キャン

The Problem with SLR(1) Parsers

- SLR(1) parser construction process does not remember enough left context to resolve conflicts
 - In the "L = R" grammar (previous slide), the symbol '=' got into follow(R) because of the following derivation:

$$S' \Rightarrow S \Rightarrow L = R \Rightarrow L = L \Rightarrow L = id \Rightarrow *\underline{R} = id \Rightarrow ...$$

- The production used is $L \to *R$
- The following rightmost derivation in *reverse* does not exist (and hence reduction by $R \rightarrow L$ on '=' in state 2 is illegal) $id = id \leftarrow L = id \leftarrow R = id...$
- Generalization of the above example
 - In some situations, when a state *i* appears on top of the stack, a viable prefix βα may be on the stack such that βA cannot be followed by 'a' in any right sentential form
 - Thus, the reduction by $A \rightarrow \alpha$ would be invalid on 'a'
 - In the above example, β = ε, α = L, and A = R; L cannot be reduced to R on '=', since it would lead to the above illegal derivation sequence

イロト 不得 とくほ とくほ とうほ

LR(1) Parsers

- LR(1) items are of the form $[A \rightarrow \alpha.\beta, a]$, *a* being the "lookahead" symbol
- Lookahead symbols have no part to play in shift items, but in reduce items of the form [*A* → α., *a*], reduction by *A* → α is valid only if the next input symbol is '*a*'
- An LR(1) item [A → α.β, a] is valid for a viable prefix γ, if there is a derivation S ⇒^{*}_{rm} δAw ⇒_{rm} δαβw, where, γ = δα, a = first(w) or w = ε and a = \$
- Consider the grammar: $S' \rightarrow S, \ S \rightarrow aSb \mid \epsilon$
 - $[S \rightarrow a.Sb, \$]$ is valid for the VP $a, S' \Rightarrow S \Rightarrow aSb$
 - $[S \rightarrow a.Sb, b]$ is valid for the VP aa, $S' \Rightarrow S \Rightarrow aSb \Rightarrow aaSbb$
 - $[S \rightarrow ., \$]$ is valid for the VP $\epsilon, S' \Rightarrow S \Rightarrow \epsilon$
 - $[S \rightarrow aSb., b]$ is valid for the VP aaSb, $S' \Rightarrow S \Rightarrow aSb \Rightarrow aaSbb$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

LR(1) Grammar - Example 1

Grammar			а	b	\$	S
$S' \rightarrow S, S \rightarrow aSb, S \rightarrow \varepsilon$		0	S2		R: S → ε	1
		1			accept	
$\frac{\text{State 0}}{\text{S'} \rightarrow .\text{S}, \$}$ $\frac{\text{S} \rightarrow .\text{aSb}, \$}{\text{S} \rightarrow ., \$}$	<u>State 4</u> S → a.Sb , b	2	S4	R: S → ε		3
		3		S5		
		4	S4	R: S → ε		6
	S → . , b	5			R: S → aSb	
State 1	State 5	6		S7		
$\frac{State I}{S' \rightarrow S.}$	$S \rightarrow aSb., $$	7		R: S → aSb		
State 2 S → a.Sb, \$ S → .aSb, b S → ., b State 3 S → aS.b, \$	$\frac{\text{State 6}}{\text{S} \rightarrow \text{aS.b}, \text{b}}$ $\frac{\text{State 7}}{\text{S} \rightarrow \text{aSb.}, \text{b}}$ $\frac{\text{Grammar is}}{\text{LR}(1)}$	acce	\$ <u>a</u>	$3 \xrightarrow{b}$	$\rightarrow 4 \xrightarrow{s}$	R: S → a ↑ b 7 ↑ b 6
				۹ 🗆		 < = >

Y.N. Srikant

Parsing

Closure of a Set of LR(1) Items

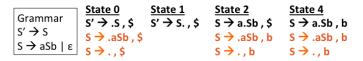
```
Itemset closure(I){ /* I is a set of LR(1) items */

while (more items can be added to I) {

for each item [A \rightarrow \alpha.B\beta, a] \in I {

for each production B \rightarrow \gamma \in G

for each symbol b \in first(\beta a)


if (item [B \rightarrow .\gamma, b] \notin I) add item [B \rightarrow .\gamma, b] to I

}

return I
```

GOTO set computation

Itemset GOTO(*I*, *X*){ /* I is a set of LR(1) items X is a grammar symbol, a terminal or a nonterminal */ Let $I' = \{[A \rightarrow \alpha X.\beta, a] \mid [A \rightarrow \alpha.X\beta, a] \in I\};$ return (*closure*(*I'*)) }

GOTO(0, S) = 1, GOTO(0,a) = 2, GOTO(2,a) = 4

void Set_of_item_sets(G'){ /* G' is the augmented grammar */ $C = \{closure(\{S' \rightarrow .S, \$\})\};$ /* C is a set of LR(1) item sets */ while (more item sets can be added to C) { for each item set $I \in C$ and each grammar symbol X /* X is a grammar symbol, a terminal or a nonterminal */ if ((GOTO(I, X) $\neq \emptyset$) && (GOTO(I, X) $\notin C$)) $C = C \cup GOTO(I, X)$

- Each set in C (above) corresponds to a state of a DFA (LR(1) DFA)
- This is the DFA that recognizes viable prefixes

イロト 不得 とくほ とくほ とうほ

LR(1) DFA Construction - Example 1

Grammar			а	b	\$	S
$S' \rightarrow S, S \rightarrow aSb, S \rightarrow \varepsilon$		0	S2		R: S→ε	1
<u></u>	61-1- A	1			accept	
State 0	State 4	2	S4	R: S → ε		3
$s' \rightarrow .s, $$ $s \rightarrow .aSb, $$		3		S5		
		4	S4	R: S → ε		6
s → . , \$	S → . , b	5			R: S → aSb	
State 1	State 5	6		S7		
$\frac{State I}{S' \rightarrow S.}$	$S \rightarrow aSb., $$	7		R: S → aSb		
State 2 S → a.Sb, \$ S → .aSb, b S → ., b State 3 S → aS.b, \$	$\frac{\text{State 6}}{\text{S} \rightarrow \text{aS.b}, \text{b}}$ $\frac{\text{State 7}}{\text{S} \rightarrow \text{aSb.}, \text{b}}$ $\frac{\text{Grammar is}}{\text{LR}(1)}$	acce 1 s → 0 R: S -	\$ <u>a</u>	3 $bs2$ ab b $bB: S \rightarrow \varepsilon$	\rightarrow 4 $\frac{s}{5}$	$\begin{array}{c} \text{R: } S \rightarrow a \\ \hline b \\ \hline 7 \\ \hline b \\ \hline 6 \end{array}$
				• • •		< ± >

Y.N. Srikant

Parsing

Let $C = \{I_0, I_1, ..., I_i, ..., I_n\}$ be the canonical LR(1) collection of items, with the corresponding states of the parser being 0, 1, ..., i, ..., n Without loss of generality, let 0 be the initial state of the parser (containing the item $[S' \rightarrow .S, \$]$) Parsing actions for state *i* are determined as follows 1. If $([\mathbf{A} \rightarrow \alpha.\mathbf{a}\beta, \mathbf{b}] \in \mathbf{I}_i)$ && $([\mathbf{A} \rightarrow \alpha\mathbf{a}.\beta, \mathbf{b}] \in \mathbf{I}_i)$ set ACTION[i, a] = *shift j* /* *a* is a terminal symbol */ 2. If $([A \rightarrow \alpha_i, a] \in I_i)$ set ACTION[i, a] = reduce $A \rightarrow \alpha$ 3. If $([S' \rightarrow S_i] \in I_i)$ set ACTION[i, \$] = accept S-R or R-R conflicts in the table imply grammar is not LR(1)4. If $([A \rightarrow \alpha.A\beta, a] \in I_i)$ && $([A \rightarrow \alpha A.\beta, a] \in I_i)$ set GOTO[i, A] = i / A is a nonterminal symbol */ All other entries not defined by the rules above are made error

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ●