
Syntax Analysis:
Context-free Grammars, Pushdown Automata and Parsing

Part - 5

Y.N. Srikant

Department of Computer Science and Automation
Indian Institute of Science

Bangalore 560 012

NPTEL Course on Principles of Compiler Design

Y.N. Srikant Parsing

Outline of the Lecture

What is syntax analysis? (covered in lecture 1)
Specification of programming languages: context-free
grammars (covered in lecture 1)
Parsing context-free languages: push-down automata
(covered in lectures 1 and 2)
Top-down parsing: LL(1) parsing
(covered in lectures 2 and 3)
Recursive-descent parsing (covered in lecture 4)
Bottom-up parsing: LR-parsing

Y.N. Srikant Parsing

LR Parsing

LR(k) - Left to right scanning with Rightmost derivation in
reverse, k being the number of lookahead tokens

k = 0,1 are of practical interest

LR parsers are also automatically generated using parser
generators
LR grammars are a subset of CFGs for which LR parsers
can be constructed
LR(1) grammars can be written quite easily for practically
all programming language constructs for which CFGs can
be written
LR parsing is the most general non-backtracking
shift-reduce parsing method (known today)
LL grammars are a strict subset of LR grammars - an LL(k)
grammar is also LR(k), but not vice-versa

Y.N. Srikant Parsing

LR Parser Generation

Y.N. Srikant Parsing

LR Parser Configuration

A configuration of an LR parser is:
(s0X1s2X2...Xmsm, aiai+1...an $), where,

stack unexpended input
s0, s1, ..., sm, are the states of the parser, and X1,X2, ...,Xm,
are grammar symbols (terminals or nonterminals)
Starting configuration of the parser: (s0,a1a2...an$),
where, s0 is the initial state of the parser, and a1a2...an is
the string to be parsed
Two parts in the parsing table: ACTION and GOTO

The ACTION table can have four types of entries: shift,
reduce, accept, or error
The GOTO table provides the next state information to be
used after a reduce move

Y.N. Srikant Parsing

LR Parsing Algorithm

Y.N. Srikant Parsing

LR Parsing Example 1 - Parsing Table

Y.N. Srikant Parsing

LR Parsing Example 1 (contd.)

Stack Input Action
0 acbbac$ S2
0a2 cbbac$ S3
0a2c3 bbac$ R3 (S → c, goto(2,S) = 8)
0a2S8 bbac$ S10
0a2S8b10 bac$ S6
0a2S8b10b6 ac$ S7
0a2S8b10b6a7 c$ R4 (A→ ba, goto(10,A) = 11)
0a2S8b10A11 c$ R6 (B → bA, goto(8,B) = 9)
0a2S8B9 c$ R5 (A→ SB, goto(2,A) = 4)
0a2A4 c$ S3
0a2A4c3 $ R3 (S → c, goto(4,S) = 5)
0a2A4S5 $ R2 (S → aAS, goto(0,S) = 1)
0S1 $ R1 (S′ → S), and accept

Y.N. Srikant Parsing

LR Parsing Example 2 - Parsing Table

Y.N. Srikant Parsing

LR Parsing Example 2(contd.)

Stack Input Action

0 id + id ∗ id$ S5
0 id 5 +id ∗ id$ R6 (F → id , G(0,F) = 3)
0 F 3 +id ∗ id$ R4 (T → F , G(0,T) = 2)
0 T 2 +id ∗ id$ R2 (E → T , G(0,E) = 1)
0 E 1 +id ∗ id$ S6
0 E 1 + 6 id ∗ id$ S5
0 E 1 + 6 id 5 ∗id$ R6 (F → id , G(6,F) = 3)
0 E 1 + 6F3 ∗id$ R4 (T → F , G(6,T) = 9)
0 E 1 + 6T 9 ∗id$ S7
0 E 1 + 6T 9 ∗ 7 id$ S5
0 E 1 + 6T9 ∗ 7 id 5 $ R6 (F → id , G(7,F) = 10)
0 E 1 + 6T9 ∗ 7F10 $ R3 (T → T ∗ F , G(6,T) = 9)
0 E 1 + 6T9 $ R1 (E → E + T , G(0,E) = 1)
0 E 1 $ R7 (S → E) and accept

Y.N. Srikant Parsing

LR Grammars

Consider a rightmost derivation:
S ⇒∗rm φBt ⇒rm φβt ,
where the production B → β has been applied
A grammar is said to be LR(k), if for any given input string,
at each step of any rightmost derivation, the handle β can
be detected by examining the string φβ and scanning at
most, first k symbols of the unused input string t

Y.N. Srikant Parsing

LR Grammars (contd.)

Example: The grammar,
{S → E , E → E + E | E ∗ E | id}, is not LR(2)

S ⇒1 E ⇒2 E + E ⇒3 E + E ∗ E ⇒4 E + E ∗ id ⇒5

E + id ∗ id ⇒6 id + id ∗ id
S ⇒1′

E ⇒2′
E ∗ E ⇒3′

E ∗ id ⇒4′
E + E ∗ id ⇒5′

E + id ∗ id ⇒6′
id + id ∗ id

In the above two derivations, the handle at steps 6 & 6’ and
at steps 5 & 5’, is E → id , and the position is underlined
(with the same lookahead of two symbols, id+ and +id)
However, the handles at step 4 and at step 4’ are different
(E → id and E → E + E), even though the lookahead of 2
symbols is the same (∗id), and the stack is also the same
(φ = E + E)
That means that the handle cannot be determined using
the lookahead

Y.N. Srikant Parsing

LR Grammars (contd.)

A viable prefix of a sentential form φβt , where β denotes
the handle, is any prefix of φβ. A viable prefix cannot
contain symbols to the right of the handle
Example: S → E#, E → E + T | E − T | T , T → id | (E)
S ⇒ E#⇒ E + T #⇒ E + (E)#⇒ E + (T)#
⇒ E + (id)#
E , E+, E + (, and E + (id , are all viable prefixes of the
right sentential form E + (id)#

It is always possible to add appropriate terminal symbols to
the end of a viable prefix to get a right-sentential form
Viable prefixes characterize the prefixes of sentential forms
that can occur on the stack of an LR parser

Y.N. Srikant Parsing

LR Grammars (contd.)

Theorem: The set of all viable prefixes of all the right
sentential forms of a grammar is a regular language
The DFA of this regular language can detect handles
during LR parsing
When this DFA reaches a “reduction state”, the
corresponding viable prefix cannot grow further and thus
signals a reduction
This DFA can be constructed by the compiler using the
grammar
All LR parsers have such a DFA incorporated in them
We construct an augmented grammar for which we
construct the DFA

If S is the start symbol of G, then G′ contains all
productions of G and also a new production S′ → S
This enables the parser to halt as soon as S′ appears on
the stack

Y.N. Srikant Parsing

DFA for Viable Prefixes - LR(0) Automaton

Y.N. Srikant Parsing

Items and Valid Items

A finite set of items is associated with each state of DFA
An item is a marked production of the form [A→ α1.α2],
where A→ α1α2 is a production and ’.’ denotes the mark
Many items may be associated with a production
e.g., the items [E → .E + T], [E → E .+ T], [E → E + .T],
and [E → E + T .] are associated with the production
E → E + T

An item [A→ α1.α2] is valid for some viable prefix φα1, iff,
there exists some rightmost derivation
S ⇒∗ φAt ⇒ φα1α2t , where t ∈ Σ∗

There may be several items valid for a viable prefix
The items [E → E − .T], [T → .id], and [T → .(E)] are all
valid for the viable prefix “E−” as shown below
S ⇒ E#⇒ E − T #, S ⇒ E#⇒ E − T #⇒ E − id#,
S ⇒ E#⇒ E − T #⇒ E − (E)#

Y.N. Srikant Parsing

Valid Items and States of LR(0) DFA

An item indicates how much of a production has already
been seen and how much remains to be seen

[E → E − .T] indicates that we have already seen a string
derivable from “E−” and that we hope to see next, a string
derivable from T

Each state of an LR(0) DFA contains only those items that
are valid for the same set of viable prefixes

All items in state 7 are valid for the viable prefixes “E−” and
“(E−” (and many more)
All items in state 4 are valid for the viable prefix “(” (and
many more)
In fact, the set of all viable prefixes for which the items in a
state s are valid is the set of strings that can take us from
state 0 (initial) to state s

Constructing the LR(0) DFA using sets of items is very
simple

Y.N. Srikant Parsing

Closure of a Set of Items

Itemset closure(I){ /* I is a set of items */
while (more items can be added to I) {

for each item [A→ α.Bβ] ∈ I {
/* note that B is a nonterminal and is right after the “.” */
for each production B → γ ∈ G

if (item [B → .γ] /∈ I) add item [B → .γ] to I
}
return I

}

Y.N. Srikant Parsing

GOTO set computation

Itemset GOTO(I, X){ /* I is a set of items
X is a grammar symbol, a terminal or a nonterminal */
Let I′ = {[A→ αX .β] | [A→ α.Xβ] ∈ I};
return (closure(I′))

}

Y.N. Srikant Parsing

Intuition behind closure and GOTO

If an item [A→ α.Bδ] is in a state (i.e., item set I), then,
some time in the future, we expect to see in the input, a
string derivable from Bδ

This implies a string derivable from B as well
Therefore, we add an item [B → .β] corresponding to each
production B → β of B, to the state (i.e., item set I)

If I is the set of items valid for a viable prefix γ
All the items in closure(I) are also valid for γ
GOTO(I,X) is the set items valid for the viable prefix γX

If [A → α.Bδ] (in item set I) is valid for the viable prefix φα,
and B → β is a production, we have
S ⇒∗ φAt ⇒ φαBδt ⇒∗ φαBxt ⇒ φαβxt
demonstrating that the item [B → .β] (in the closure of I) is
valid for φα
The above derivation also shows that the item [A → αB.δ]
(in GOTO(I,B) is valid for the viable prefix φαB

Y.N. Srikant Parsing

Construction of Sets of Canonical LR(0) Items

void Set_of_item_sets(G′){ /* G’ is the augmented grammar */
C = {closure({S′ → .S})};/* C is a set of item sets */
while (more item sets can be added to C) {

for each item set I ∈ C and each grammar symbol X
/* X is a grammar symbol, a terminal or a nonterminal */

if ((GOTO(I,X) 6= ∅) && (GOTO(I,X) /∈ C))
C = C ∪GOTO(I,X)

}
}

Each set in C (above) corresponds to a state of a DFA
(LR(0) DFA)
This is the DFA that recognizes viable prefixes

Y.N. Srikant Parsing

Construction of an LR(0) Automaton - Example 1

Y.N. Srikant Parsing

Shift and Reduce Actions

If a state contains an item of the form [A→ α.] (“reduce
item”), then a reduction by the production A→ α is the
action in that state
If there are no “reduce items” in a state, then shift is the
appropriate action
There could be shift-reduce conflicts or reduce-reduce
conflicts in a state

Both shift and reduce items are present in the same state
(S-R conflict), or
More than one reduce item is present in a state (R-R
conflict)
It is normal to have more than one shift item in a state (no
shift-shift conflicts are possible)

If there are no S-R or R-R conflicts in any state of an LR(0)
DFA, then the grammar is LR(0), otherwise, it is not LR(0)

Y.N. Srikant Parsing

