Syntax Analysis:

Context-free Grammars, Pushdown Automata and Parsing
Part- 5

Y.N. Srikant

Department of Computer Science and Automation
Indian Institute of Science
Bangalore 560 012

NPTEL Course on Principles of Compiler Design

Y.N. Srikant Parsing

Outline of the Lecture

@ What is syntax analysis? (covered in lecture 1)

@ Specification of programming languages: context-free
grammars (covered in lecture 1)

@ Parsing context-free languages: push-down automata
(covered in lectures 1 and 2)

@ Top-down parsing: LL(1) parsing

(covered in lectures 2 and 3)
@ Recursive-descent parsing (covered in lecture 4)
@ Bottom-up parsing: LR-parsing

Y.N. Srikant Parsing

LR Parsing

@ LR(k) - Left to right scanning with Rightmost derivation in
reverse, k being the number of lookahead tokens

e k= 0,1 are of practical interest

@ LR parsers are also automatically generated using parser
generators

@ LR grammars are a subset of CFGs for which LR parsers
can be constructed

@ LR(1) grammars can be written quite easily for practically
all programming language constructs for which CFGs can
be written

@ LR parsing is the most general non-backtracking
shift-reduce parsing method (known today)

@ LL grammars are a strict subset of LR grammars - an LL(k)
grammar is also LR(k), but not vice-versa

Y.N. Srikant Parsing

LR Parser Generation

Parsing Table

Grammar Table
Generator
| t *\
npu Driver Parsing
Stack Routine Table
E——

Output

LR Parser Generator

Y.N. Srikant Parsing

LR Parser Configuration

@ A configuration of an LR parser is:
(S0 X182Xs...XmSm, ajajr1...an $), Where,
stack unexpended input
So, $1, ---, Sm, are the states of the parser, and Xi, Xs, ..., Xm,
are grammar symbols (terminals or nonterminals)

@ Starting configuration of the parser: (Sp, atas...an$),
where, sy is the initial state of the parser, and ajas...an is
the string to be parsed

@ Two parts in the parsing table: ACTION and GOTO

e The ACTION table can have four types of entries: shift,
reduce, accept, or error

e The GOTO table provides the next state information to be
used after a reduce move

Y.N. Srikant Parsing

LR Parsing Algorithm

Input Initial configuration: Stack = state 0, Input = ws,
a = first input symbol;
repeat {

Parser let s be the top stack state;

let a be the next input symbol;
if (ACTION[s, a] == shift p) {
push a and p onto the stack (in that order);
Table advance input pointer;
} else if (ACTION(s,a] == reduce A 2 a) then {
pop 2*|a | symbols off the stack;
let s” be the top of stack state now;
push A and GOTO(s’, A] onto the stack
(in that order);
} else if (ACTION(s, a] == accept) break;
/* parsng is over */
else error();
}until true; /* for ever */

Stack

Y.N. Srikant Parsing

LR Parsing Example 1 - Parsing Table

STATE ACTION GOTO
a b c $ S A B
s2 S3 1
R1
acc ,
2 s2 | s6 | s3 8 4 :12 g —_))aSAS
3 R3 | R3 | R3 | R3 ‘
4 s2 S3 5 3.53¢
4. A= ba
5 R2 | R2 | R2 | R2 5 A- SB
6 ST 6.B - bA
7 R4 | R4 | R4 | R4 7B>S
8 s2 | 810 | 83 12 9
9 R5 | R5 | R5 | R5
10 S2 | s6 | S3 8 11
1 R6 | R6 | R6 | RB
12 R7 | R7 | R7 | RY
Y.N. Srikant Parsing

LR Parsing Example 1 (contd.)

Stack

0

0a2

0a2c3

02258
0a258b10
0a258b10b6
0a2S8b10b6a7
0a2S8b10A11
0a258B9
0a2A4
0a2A4c3
0a2A4 S5
051

Input
acbbacs
cbbacs
bbacs
bbacs
bacs

acs
cs
c$
cs
cs3
$

$

$

Y.N. Srikant

Action

S2

S3

R3 (S — ¢, goto(2,S) = 8)
S10

S6

S7

R4 (A — ba, goto(10,A) = 11)
R6 (B — bA, goto(8,B) = 9)
R5 (A — SB, goto(2,A) = 4)
S3

R3 (S — ¢, goto(4,S) = 5)
R2 (S — aAS, goto(0,S) = 1)
R1 (S’ — S), and accept

Parsing

LR Parsing Example 2 - Parsing Table

STATE ACTION GOTO
id |+ |~ | (|)|$|E]|T
0 S5 sS4 1] 2
1 S6 R7
ace 1. E> E+T
2 R2 | 57 R2 | R2 2. E>T
3 R4 | R4 R4 | R4 3. T>TF
4 S5 S4 8| 2|3 g ;j(FE)
5 R6 | R6 R6 | R6 :
6 S5 sS4 9 |3 6. F>id
7. S=2>E
7 S5 S4 10
8 S6 s11
9 R1 | S7 R1 | R1
10 R3 | R3 R3 | R3
11 R5 | RS R5 | RS

Y.N. Srikant Parsing

LR Parsing Example 2(contd.)

Stack

0

0id5

0F3

0T2

0EA1

0OE1+6
OE1+6id5
0E1+6F3
0E1+6T9
OE1+6T7T9x7
0E14+6T9x7id5
0E1+6T9%7F10
0E1+6T9

0E1

Input

id + id * ids
+id * id$
+id = ids
+id * id$
+id % id$

id * id$
xids
xid$
*ids

ids
$

$
$
$

Y.N. Srikant Parsing

Action

S5

R6 (F — id, G(0,F)
R4 (T — F, G(0,T) = 2)
R2(E — T, G(O,E) = 1
S6

S5

R6 (F — id, G(6,F) = 3)
R4 (T — F,G(6,T) = 9)

s7

S5

R6 (F — id, G(7,F) = 10)
R3(T — T+ F,G(6,T) = 9)
R1 (
R7 (

I
@«

E—-E+T,G0,E)=1)
S — E) and accept

LR Grammars

@ Consider a rightmost derivation:
S =y ¢Bt =m ¢pt,
where the production B — (3 has been applied

@ A grammar is said to be LR(Kk), if for any given input string,
at each step of any rightmost derivation, the handle 5 can
be detected by examining the string ¢4 and scanning at
most, first k symbols of the unused input string ¢

Y.N. Srikant Parsing

LR Grammars (contd.)

@ Example: The grammar,
{S—E, E—~E+E|ExE|id},isnotLR(2)

0 S=TE=2E4+E=SE+ExE=*E+Exid="°
E +id * id =8 id + id x id

0o SV E=S? ExE=%Exid=* E4+Exid=%
E+idxid =% id+ id x id

e In the above two derivations, the handle at steps 6 & 6’ and
at steps 5 & 5', is E — id, and the position is underlined
(with the same lookahead of two symbols, id+ and +id)

e However, the handles at step 4 and at step 4’ are different
(E — id and E — E + E), even though the lookahead of 2
symbols is the same (xid), and the stack is also the same
(p=E+E)

e That means that the handle cannot be determined using
the lookahead

Y.N. Srikant Parsing

LR Grammars (contd.)

@ A viable prefix of a sentential form ¢t, where S denotes
the handle, is any prefix of ¢3. A viable prefix cannot
contain symbols to the right of the handle

@ Example: S - E#,E—-E+T|E-T|T,T—id|(E)
S=E#=>E+T#=E+(E)#=E+(T)#
= E + (id)#

E, E+, E+(,and E + (id, are all viable prefixes of the
right sentential form E + (id)#

@ Itis always possible to add appropriate terminal symbols to
the end of a viable prefix to get a right-sentential form

@ Viable prefixes characterize the prefixes of sentential forms
that can occur on the stack of an LR parser

Y.N. Srikant Parsing

LR Grammars (contd.)

@ Theorem: The set of all viable prefixes of all the right
sentential forms of a grammar is a regular language

@ The DFA of this regular language can detect handles
during LR parsing

@ When this DFA reaches a “reduction state”, the
corresponding viable prefix cannot grow further and thus
signals a reduction

@ This DFA can be constructed by the compiler using the
grammar
@ All LR parsers have such a DFA incorporated in them

@ We construct an augmented grammar for which we
construct the DFA
e If Sis the start symbol of G, then G’ contains all
productions of G and also a new production S’ — S
e This enables the parser to halt as soon as S’ appears on
the stack

Y.N. Srikant Parsing

DFA for Viable Prefixes - LR(0) Automaton

S > E# 1. SS>E# 2. E->E+T
3. ESET 4 EST
5. T>(E) 6 Toid

Y.N. Srikant Parsing

ltems and Valid ltems

@ A finite set of items is associated with each state of DFA
e An itemis a marked production of the form [A — aq.az],
where A — aqaq is a production and ' denotes the mark
e Many items may be associated with a production
eg., theitems|[E - .E+T]|, [E—-E.+T], [E— E+.T],

and [E — E + T.] are associated with the production
E—-E+T

@ Anitem [A — «q.ap] is valid for some viable prefix ¢ay, iff,
there exists some rightmost derivation
S =* pAt = paqast, where t € T*

@ There may be several items valid for a viable prefix

e Theitems [E — E—.T], [T — .id],and [T — .(E)] are all
valid for the viable prefix “E—" as shown below
S=>E#H=E—T#,S=E#=E—T#= E— id#,
S=E#=E-T#=E— (E)#

Y.N. Srikant Parsing

Valid ltems and States of LR(0) DFA

@ Anitem indicates how much of a production has already
been seen and how much remains to be seen

e [E — E — .T] indicates that we have already seen a string
derivable from “E—" and that we hope to see next, a string
derivable from T

@ Each state of an LR(0) DFA contains only those items that
are valid for the same set of viable prefixes

e Allitems in state 7 are valid for the viable prefixes “E—" and
“(E=" (and many more)

o Allitems in state 4 are valid for the viable prefix “(” (and
many more)

e In fact, the set of all viable prefixes for which the items in a
state s are valid is the set of strings that can take us from
state 0 (initial) to state s

@ Constructing the LR(0) DFA using sets of items is very
simple

Y.N. Srikant Parsing

Closure of a Set of ltems

Itemset closure(){ /* | is a set of items */
while (more items can be added to 1) {
for each item [A — «.Bf] € I{
/* note that B is a nonterminal and is right after the “.” */
for each production B — v € G
if (item [B — .7] ¢) add item [B — .v] to /
}

return /

State 0 State 1 State 7 State 2
S 2> .E# S>E# E2>ET E->T
E->.E+T EE+4T T (E)

E->.ET E-2E-T T-.d

E->.T

T->.(E) @ indicates closure items

T-.id

Y.N. Srikant Parsing

GOTO set computation

ltemset GOTO(I, X){ /* lis a set of items
X'is a grammar symbol, a terminal or a nonterminal */
Let /' ={[A— aX.B] | [A— a.XB] € I};
return (closure(!'))

}

State 0 State 1 State 7
S > .E# S>E# E->E-T
E=> . E+T E=2E+T T-= .(E)
E > .E-T E2>E-T T->.id

E=>.T

T> (E) @ indicates closure items

T->.id GOTO(0, E) =1
GOTO(1,-)=7

Y.N. Srikant Parsing

Intuition behind closure and GOTO

@ If anitem [A — «.Bd] is in a state (i.e., item set |), then,
some time in the future, we expect to see in the input, a
string derivable from B¢

e This implies a string derivable from B as well
e Therefore, we add an item [B — .5] corresponding to each
production B — j of B, to the state (i.e., item set)

@ If /is the set of items valid for a viable prefix ~

o All the items in closure(/) are also valid for
e GOTO(I, X) is the set items valid for the viable prefix vX
o If [A — «.Bd] (in item set I) is valid for the viable prefix ¢a,
and B — [is a production, we have
S =" pAt = paBit =" paBxt = pafBxt
demonstrating that the item [B — .] (in the closure of 1) is

valid for ¢a
@ The above derivation also shows that the item [A — aB.d]
(in GOTO(/, B) is valid for the viable prefix paB

Y.N. Srikant Parsing

Construction of Sets of Canonical LR(0) Items

void Set_of item_sets(G'){ /* G’ is the augmented grammar */
C = {closure({S' — .S})};/* Cis a set of item sets */
while (more item sets can be added to C) {
for each item set / € C and each grammar symbol X
/* X'is a grammar symbol, a terminal or a nonterminal */
if (GOTO(I, X) # 0) && (GOTO(I, X) ¢ C))
C=CuUGOTO(I, X)

@ Each setin C (above) corresponds to a state of a DFA
(LR(0) DFA)
@ This is the DFA that recognizes viable prefixes

Y.N. Srikant Parsing

Construction of an LR(0) Automaton - Example 1

State 0 State 3 State 6 State 9

S 2> .E# T -2 id. E =2 E+.T E -2 E-T.

E > .E+T T (E)

E > .E-T T->.id

E>.T State 4

T->.(E) T (E) State 7 State 10

T .id E S E+T E->E-T T (E)
E = .E-T T-> .(E) E > EA+T

State 1 E=>T T-.id E-2>E.-T

S>E# T (E)

E :)) EJ’: T>.d State 8 State 11

' E > E+T. T (E).

State 5

State 2 S 2> E#. @ indicates closure items

E->T.

@ indicates kernel items

Y.N. Srikant Parsing

Shift and Reduce Actions

@ If a state contains an item of the form [A — «.] (“reduce
item”), then a reduction by the production A — « is the
action in that state

@ If there are no “reduce items” in a state, then shift is the
appropriate action
@ There could be shift-reduce conflicts or reduce-reduce
conflicts in a state
e Both shift and reduce items are present in the same state
(S-R conflict), or
e More than one reduce item is present in a state (R-R
conflict)
e It is normal to have more than one shift item in a state (no
shift-shift conflicts are possible)

@ If there are no S-R or R-R conflicts in any state of an LR(0)
DFA, then the grammar is LR(0), otherwise, it is not LR(0)

Y.N. Srikant Parsing

