Syntax Analysis:

Context-free Grammars, Pushdown Automata and Parsing Part - 3

Y.N. Srikant

Department of Computer Science and Automation Indian Institute of Science

Bangalore 560012

NPTEL Course on Principles of Compiler Design

Outline of the Lecture

- What is syntax analysis? (covered in lecture 1)
- Specification of programming languages: context-free grammars (covered in lecture 1)
- Parsing context-free languages: push-down automata (covered in lectures 1 and 2)
- Top-down parsing: LL(1) and recursive-descent parsing
- Bottom-up parsing: LR-parsing

Testable Conditions for $\operatorname{LL}(1)$

- We call strong $\operatorname{LL}(1)$ as $\mathrm{LL}(1)$ from now on and we will not consider lookaheads longer than 1
- The classical condition for LL(1) property uses FIRST and FOLLOW sets
- If α is any string of grammar symbols $\left(\alpha \in(N \cup T)^{*}\right)$, then $\operatorname{FIRST}(\alpha)=\left\{a \mid a \in T\right.$, and $\left.\alpha \Rightarrow^{*} a x, x \in T^{*}\right\}$ $\operatorname{FIRST}(\epsilon)=\{\epsilon\}$
- If A is any nonterminal, then
$\operatorname{FOLLOW}(A)=\left\{a \mid S \Rightarrow^{*} \alpha A a \beta, \alpha, \beta \in(N \cup T)^{*}\right.$,

$$
a \in T \cup\{\$\}\}
$$

- $\operatorname{FIRST}(\alpha)$ is determined by α alone, but $\operatorname{FOLLOW}(A)$ is determined by the "context" of A, i.e., the derivations in which A occurs

FIRST and FOLLOW Computation Example

- Consider the following grammar
$S^{\prime} \rightarrow S \$, S \rightarrow a A S|c, A \rightarrow b a| S B, B \rightarrow b A \mid S$
- $\operatorname{FIRST}\left(S^{\prime}\right)=\operatorname{FIRST}(S)=\{a, c\}$ because
$S^{\prime} \Rightarrow S \$ \Rightarrow \underline{c} \$$, and $S^{\prime} \Rightarrow S \$ \Rightarrow \underline{a} A S \$ \Rightarrow \underline{a} b a S \$ \Rightarrow \underline{a} b a c \$$
- $\operatorname{FIRST}(A)=\{a, b, c\}$ because
$A \Rightarrow \underline{b} a$, and $A \Rightarrow S B$, and therefore all symbols in $\operatorname{FIRST}(S)$ are in $\operatorname{FIRST}(A)$
- $\operatorname{FOLLOW}(S)=\{a, b, c, \$\}$ because
$S^{\prime} \Rightarrow \underline{S \$}$,
$S^{\prime} \Rightarrow{ }^{*} a A S \$ \Rightarrow a S B S \$ \Rightarrow a S \underline{b} A S \$$,
$S^{\prime} \Rightarrow{ }^{*}$ aSBS $\$ \Rightarrow a S S S \$ \Rightarrow a S a A S S \$$,
$S^{\prime} \Rightarrow^{*}$ aSSS $\$ \Rightarrow a S \underline{c} S \$$
- $\operatorname{FOLLOW}(A)=\{a, c\}$ because
$S^{\prime} \Rightarrow^{*}$ a $\underline{A S \$} \Rightarrow$ aAaASS,
$S^{\prime} \Rightarrow{ }^{*} a \underline{A} S \$ \Rightarrow a A \underline{c}$

Computation of FIRST: Terminals and Nonterminals

```
{
    for each (a\inT) FIRST(a) = {a}; FIRST (\epsilon) = {\epsilon};
    for each (A\inN) FIRST(A)=\emptyset;
    while (FIRST sets are still changing) {
        for each production p {
            Let p}\mathrm{ be the production }A->\mp@subsup{X}{1}{}\mp@subsup{X}{2}{}\ldots\mp@subsup{X}{n}{}\mathrm{ ;
            FIRST}(A)=FIRST(A)\cup(FIRST (X, 隹 - {\epsilon})
            i = 1;
            while ( }\epsilon\in\operatorname{FIRST}(\mp@subsup{X}{i}{})&&i\leqn-1) 
            FIRST}(A)=\operatorname{FIRST}(A)\cup(FIRST (Xi+1 - {\epsilon});i++;
            }
            if (i==n) && (\epsilon\in\operatorname{FIRST}(\mp@subsup{X}{n}{}))
            FIRST(A)=FIRST}(A)\cup{\epsilon
    }
}
```


Computation of $\operatorname{FIRST}(\beta): \beta$, a string of Grammar Symbols

\{ /* It is assumed that FIRST sets of terminals and nonterminals are already available /*
$\operatorname{FIRST}(\beta)=\emptyset$;
while (FIRST sets are still changing) \{
Let β be the string $X_{1} X_{2} \ldots X_{n}$;
$\operatorname{FIRST}(\beta)=\operatorname{FIRST}(\beta) \cup\left(\operatorname{FIRST}\left(X_{1}\right)-\{\epsilon\}\right) ;$
$i=1$;
while $\left(\epsilon \in \operatorname{FIRST}\left(X_{i}\right) \& \& i \leq n-1\right)\{$
$\operatorname{FIRST}(\beta)=\operatorname{FIRST}(\beta) \cup\left(\operatorname{FIRST}\left(X_{i+1}-\{\epsilon\}\right) ; i++;\right.$
\}
if $(i==n) \& \&\left(\epsilon \in \operatorname{FIRST}\left(X_{n}\right)\right)$ $\operatorname{FIRST}(\beta)=\operatorname{FIRST}(\beta) \cup\{\epsilon\}$
\}
\}

- Consider the following grammar $S^{\prime} \rightarrow S \$, S \rightarrow a A S|\epsilon, A \rightarrow b a| S B, B \rightarrow c A \mid S$
- Initially, $\operatorname{FIRST}(S)=\operatorname{FIRST}(A)=\operatorname{FIRST}(B)=\emptyset$
- Iteration 1
- $\operatorname{FIRST}(S)=\{a, \epsilon\}$ from the productions $S \rightarrow a A S \mid \epsilon$
- $\operatorname{FIRST}(A)=\{b\} \cup \operatorname{FIRST}(S)-\{\epsilon\} \cup \operatorname{FIRST}(B)-\{\epsilon\}=\{b, a\}$ from the productions $A \rightarrow b a \mid S B$ (since $\epsilon \in \operatorname{FIRST}(S), \operatorname{FIRST}(B)$ is also included; since $\operatorname{FIRST}(B)=\phi, \epsilon$ is not included)
$-\operatorname{FIRST}(B)=\{c\} \cup \operatorname{FIRST}(S)-\{\epsilon\} \cup\{\epsilon\}=\{c, a, \epsilon\}$
from the productions $B \rightarrow C A \mid S$ (ϵ is included because $\epsilon \in \operatorname{FIRST}(S)$)

FIRST Computation: Algorithm Trace - 2

- The grammar is
$S^{\prime} \rightarrow S \$, S \rightarrow a A S|\epsilon, A \rightarrow b a| S B, B \rightarrow c A \mid S$
- From the first iteration,
$\operatorname{FIRST}(S)=\{a, \epsilon\}, \operatorname{FIRST}(A)=\{b, a\}, \operatorname{FIRST}(B)=\{c, a, \epsilon\}$
- Iteration 2
(values stabilize and do not change in iteration 3)
- $\operatorname{FIRST}(S)=\{a, \epsilon\}$ (no change from iteration 1)
- $\operatorname{FIRST}(A)=\{b\} \cup \operatorname{FIRST}(S)-\{\epsilon\} \cup \operatorname{FIRST}(B)-\{\epsilon\} \cup\{\epsilon\}$

$$
=\{b, a, c, \epsilon\} \text { (changed!) }
$$

- $\operatorname{FIRST}(B)=\{c, a, \epsilon\}$ (no change from iteration 1$)$

Computation of FOLLOW

```
{ for each (X\inN\cupT) FOLLOW (X) = \emptyset;
    FOLLOW (S) ={$}; /* S is the start symbol of the grammar */
    repeat {
        for each production A->\mp@subsup{X}{1}{}\mp@subsup{X}{2}{}\ldots\mp@subsup{X}{n}{}{/* X Xi\not=\epsilon*/
            FOLLOW (Xn)= FOLLOW (Xn) \cupFOLLOW(A);
            REST = FOLLOW(A);
            for i=n downto 2 {
            if ( }\epsilon\in\operatorname{FIRST}(\mp@subsup{X}{i}{})){\operatorname{FOLLOW}(\mp@subsup{X}{i-1}{})
                FOLLOW (Xi-1)\cup (FIRST (Xi) - {\epsilon})\cup REST;
                REST = FOLLOW (X (X-1 );
            } else { FOLLOW (Xi-1 ) = FOLLOW (Xi-1 ) \cup FIRST (X (X);
                                    REST = FOLLOW(Xi-1);}
            }
    }
    } until no FOLLOW set has changed
}
```


FOLLOW Computation: Algorithm Trace

- Consider the following grammar $S^{\prime} \rightarrow S \$, S \rightarrow a A S|\epsilon, A \rightarrow b a| S B, B \rightarrow c A \mid S$
- Initially, follow $(S)=\{\$\}$; follow $(A)=$ follow $(B)=\emptyset$ $\operatorname{first}(S)=\{a, \epsilon\} ; \operatorname{first}(A)=\{a, b, c, \epsilon\} ; \operatorname{first}(B)=\{a, c, \epsilon\}$;
- Iteration $1 / *$ In the following, $x \cup=y$ means $x=x \cup y * /$
- $S \rightarrow$ aAS: follow $(S) \cup=\{\$\}$; rest $=$ follow $(S)=\{\$\}$
follow $(A) \cup=($ first $(S)-\{\epsilon\}) \cup$ rest $=\{a, \$\}$
- $A \rightarrow S B:$ follow $(B) \cup$ follow $(A)=\{a, \$\}$
rest $=$ follow $(A)=\{a, \$\}$
follow $(S) \cup=($ first $(B)-\{\epsilon\}) \cup$ rest $=\{a, c, \$\}$
- $B \rightarrow c A$: follow $(A) \cup$ follow $(B)=\{a, \$\}$
- $B \rightarrow S$: follow $(S) \cup=$ follow $(B)=\{a, c, \$\}$
- At the end of iteration 1 follow $(S)=\{a, c, \$\} ;$ follow $(A)=$ follow $(B)=\{a, \$\}$

FOLLOW Computation: Algorithm Trace (contd.)

- $\operatorname{first}(S)=\{a, \epsilon\} ; \operatorname{first}(A)=\{a, b, c, \epsilon\} ;$ first $(B)=\{a, c, \epsilon\} ;$
- At the end of iteration 1 follow $(S)=\{a, c, \$\} ;$ follow $(A)=$ follow $(B)=\{a, \$\}$
- Iteration 2
- $S \rightarrow a A S:$ follow $(S) \cup=\{a, c, \$\}$; rest $=$ follow $(S)=\{a, c, \$\}$ follow $(A) \cup=($ first $(S)-\{\epsilon\}) \cup$ rest $=\{a, c, \$\}$ (changed!)
- $A \rightarrow S B:$ follow $(B) \cup$ follow $(A)=\{a, c, \$\}$ (changed!) rest $=$ follow $(A)=\{a, c, \$\}$ follow $(S) \cup=(\operatorname{first}(B)-\{\epsilon\}) \cup$ rest $=\{a, c, \$\}$ (no change)
- At the end of iteration 2 follow $(S)=$ follow $(A)=$ follow $(B)=\{a, c, \$\}$;
- The follow sets do not change any further

LL(1) Conditions

- Let G be a context-free grammar
- G is $L L(1)$ iff for every pair of productions $A \rightarrow \alpha$ and $A \rightarrow \beta$, the following condition holds
- $\operatorname{dirsymb}(\alpha) \cap \operatorname{dirsymb}(\beta)=\emptyset$, where $\operatorname{dirsymb}(\gamma)=$ if $(\epsilon \in \operatorname{first}(\gamma))$ then $(($ first $(\gamma)-\{\epsilon\}) \cup$ follow $(A))$ else first (γ)
(γ stands for α or β)
- dirsymb stands for "direction symbol set"
- An equivalent formulation (as in ALSU's book) is as below
- first $(\alpha$. follow $(A)) \cap$ first $(\beta$.follow $(A))=\emptyset$
- Construction of the $\mathrm{LL}(1)$ parsing table
for each production $A \rightarrow \alpha$
for each symbol $\boldsymbol{s} \in \operatorname{dirsymb}(\alpha)$
/* s may be either a terminal symbol or \$ */ add $A \rightarrow \alpha$ to $\operatorname{LLPT}[A, s]$
Make each undefined entry of LLPT as error

LL(1) Table Construction using FIRST and FOLLOW

for each production $A \rightarrow \alpha$
for each terminal symbol $\boldsymbol{a} \in \operatorname{first}(\alpha)$
add $A \rightarrow \alpha$ to $\operatorname{LLPT}[A, a]$
if $\epsilon \in \operatorname{first}(\alpha)\{$
for each terminal symbol $b \in$ follow (A) add $A \rightarrow \alpha$ to $\operatorname{LLPT}[A, b]$
if $\$ \in$ follow (A)
add $A \rightarrow \alpha$ to $\operatorname{LLPT}[A, \$]$
\}
Make each undefined entry of LLPT as error

- After the construction of the $\operatorname{LL}(1)$ table is complete (following any of the two methods), if any slot in the $\operatorname{LL}(1)$ table has two or more productions, then the grammar is NOT LL(1)

Simple Example of LL(1) Grammar

- P1: $S \rightarrow$ if (a) S else $S \mid$ while (a) $S \mid$ begin SL end

P2: $S L \rightarrow S S^{\prime}$
P3: $S^{\prime} \rightarrow ; S L \mid \epsilon$

- \{if, while, begin, end, a, (,), ;\} are all terminal symbols
- Clearly, all alternatives of P1 start with distinct symbols and hence create no problem
- P2 has no choices
- Regarding P3, dirsymb $(; \mathrm{SL})=\{;\}$, and dirsymb $(\epsilon)=\{$ end $\}$, and the two have no common symbols
- Hence the grammar is $\operatorname{LL}(1)$

LL(1) Table Construction Example 1

LL(1) Parsing Table for the original grammar

	if	id	else	a	$\$$
S^{\prime}	$S^{\prime} \rightarrow S \$$			$S^{\prime} \rightarrow S \$$	
S	$S \rightarrow$ if id S				
$S \rightarrow$ if id S else S			$S \rightarrow a$		

Original Grammar
Grammar is not LL(1)

$$
\begin{aligned}
& S^{\prime} \rightarrow S \$ \\
& S \rightarrow \text { if id } S \mid \\
& \quad \text { if id } S \text { else } S \mid \\
& \quad \text { a }
\end{aligned}
$$

tokens: if, id, else, a
$\operatorname{dirsymb}(\mathrm{S} \$)=\{\mathrm{if}, \mathrm{a}\} ; \operatorname{dirsymb}(\mathrm{a})=\{\mathrm{a}\}$ dirsymb(if id S) $=\{i f\}$
dirsymb(if id S else S) $=\{i f\}$
$\operatorname{dirsymb}($ if id $S) \cap \operatorname{dirsymb}(a)=\varnothing$
$\operatorname{dirsymb}($ if id S else $S) \bigcap \operatorname{dirsymb}(a)=\varnothing$
$\operatorname{dirsymb}($ if id $S) \bigcap \operatorname{dirsymb}($ if id S else $S) \neq \varnothing$

LL(1) Table Problem Example 1

string: if id (if id a1) else a2
parentheses are not part of the string
string: if id (if id a1 else a2)
parentheses are not part of the string

LL(1) Table Construction Example 2

Original Grammar

```
S' }->\mathrm{ S$
S H if id S |
    if id S else S |
    a
```

LL(1) Parsing Table for modified grammar

	if	else	a	\$
S^{\prime}	$S^{\prime} \rightarrow S \$$		$S^{\prime} \rightarrow S \$$	
S	$S \rightarrow$ if id $S S 1$		$S \rightarrow a$	
$S 1$		$S 1 \rightarrow \varepsilon$ $S 1 \rightarrow$ else S		$S 1 \rightarrow \varepsilon$

```
dirsymb(S$) = {if, a}; dirsymb (a) = {a}
dirsymb(if id S S1) = {if}
dirsymb(else S) = {else}
dirsymb (\varepsilon) = {else, $}
```

Grammar is not $\mathrm{LL}(1)$

Left-Factored Grammar

```
S' }->\mathrm{ S$
S T if id S S1 | a
S1 }->\varepsilon|\mathrm{ else S
```

tokens: if, id, else, a
$\operatorname{dirsymb}($ if id $S S 1) \cap \operatorname{dirsymb}(a)=\varnothing$ $\operatorname{dirsymb}(\varepsilon) \bigcap \operatorname{dirsymb}($ else $S) \neq \varnothing$

LL(1) Table Problem Example 2

parentheses are not part of the string

LL(1) Table Construction Example 3

LL(1) Parsing Table

$$
\begin{aligned}
& S^{\prime} \rightarrow \mathrm{S} \$ \\
& \mathrm{~S} \rightarrow \text { aAS |c } \\
& \mathrm{A} \rightarrow \text { ba | } \mathrm{SB} \\
& \mathrm{~B} \rightarrow \text { bA } \mid \mathrm{S}
\end{aligned}
$$

Grammar is $\mathrm{LL}(1)$

	a	b	c	\$
S^{\prime}	$S^{\prime} \rightarrow$ S $\$$		$S^{\prime} \rightarrow$ S $\$$	
S	$S \rightarrow a A S$		$S \rightarrow C$	
A	$A \rightarrow S B$	$A \rightarrow b a$	$A \rightarrow S B$	
B	$B \rightarrow S$	$B \rightarrow b A$	$B \rightarrow S$	

$\operatorname{dirsymb}(a A S) \bigcap \operatorname{dirsymb}(c)=\varnothing$
$\operatorname{dirsymb}(b a) \cap \operatorname{dirsymb}(S B)=\varnothing$
$\operatorname{dirsymb}(b A) \bigcap \operatorname{dirsymb}(S)=\varnothing$

$$
\begin{aligned}
& \text { follow }(S)=\{a, b, c, \$\} \\
& \text { follow }(A)=\{a, c\} \\
& \text { follow }(B)=\{a, c\}
\end{aligned}
$$

dirsymb(S\$) $=\{a, c\}$
dirsymb $(a A S)=\{a\}$
$\operatorname{dirsymb}(c)=\{c\}$

$$
\begin{aligned}
& \operatorname{dirsymb}(b a)=\{b\} \\
& \operatorname{dirsymb}(S B)=\{a, c\} \\
& \operatorname{dirsymb}(b A)=\{b\} \\
& \operatorname{dirsymb}(S)=\{a, c\}
\end{aligned}
$$

LL(1) Table Construction Example 4

Left-Recursive Grammar
for Statement List

$$
\begin{aligned}
& S^{\prime} \rightarrow \text { SL } \$ \\
& S L \rightarrow S L S \quad S \\
& S \rightarrow a
\end{aligned}
$$

dirsymb(SL \$) = \{a\} dirsymb (a) = \{a\} dirsymb(SL S) $=\{a\}$ dirsymb(S) $=\{\mathrm{a}\}$

LL(1) Parsing Table for Left-Recursive Grammar

S^{\prime}	$S^{\prime} \rightarrow$ SL \$
SL	SL \rightarrow SL S $S L$
S	$S \rightarrow a$

Grammar is not LL(1)

Right-Recursive Grammar for Statement List

$$
\begin{aligned}
& S^{\prime} \rightarrow \text { SL \$ } \\
& S L \rightarrow \text { S A } \\
& A \rightarrow \text { S A | } \\
& S \rightarrow \text { a }
\end{aligned}
$$

LL(1) Parsing Table for Right-Recursive Grammar

	a	$\$$
S^{\prime}	$S^{\prime} \rightarrow$ SL \$	
SL	$S L \rightarrow S$ A	
A	$A \rightarrow S A$	$A \rightarrow \varepsilon$
S	$S \rightarrow a$	

$\operatorname{dirsymb}(S A) \cap \operatorname{dirsymb}(\varepsilon)=\varnothing$

$$
\begin{aligned}
& \operatorname{dirsymb}(\text { SL \$ })=\{a\} \\
& \operatorname{dirsymb}(a)=\{a\} \\
& \operatorname{dirsymb}(S A)=\{a\} \\
& \operatorname{dirsymb}(\varepsilon)=\{\$\}
\end{aligned}
$$

Grammar is LL(1)
$\operatorname{dirsymb}(S L S) \cap \operatorname{dirsymb}(S) \neq \varnothing$

Elimination of Useless Symbols

Now we study the grammar transformations, elimination of useless symbols, elimination of left recursion and left factoring

- Given a grammar $G=(N, T, P, S)$, a non-terminal X is useful if $S \Rightarrow^{*} \alpha X \beta \Rightarrow^{*} w$, where, $w \in T^{*}$
Otherwise, X is useless
- Two conditions have to be met to ensure that X is useful
(1) $X \Rightarrow^{*} w, w \in T^{*}$ (X derives some terminal string)
(2) $S \Rightarrow^{*} \alpha X \beta$ (X occurs in some string derivable from S)
- Example: $S \rightarrow A B|C A, B \rightarrow B C| A B, A \rightarrow a$, $C \rightarrow a B \mid b, D \rightarrow d$
(1) $A \rightarrow a, C \rightarrow b, D \rightarrow d, S \rightarrow C A$
(2) $S \rightarrow C A, A \rightarrow a, C \rightarrow b$

Testing for $X \Rightarrow{ }^{*} w$

$\mathrm{G}^{\prime}=\left(\mathrm{N}^{\prime}, \mathrm{T}^{\prime}, \mathrm{P}^{\prime}, \mathrm{S}^{\prime}\right)$ is the new grammar
N_OLD $=\phi$;
N_NEW $=\left\{X \mid X \rightarrow w, w \in T^{*}\right\}$
while N_OLD \neq N_NEW do \{
N_OLD = N_NEW;
N_NEW $=$ N_OLD $\cup\left\{X \mid X \rightarrow \alpha, \alpha \in\left(T \cup N _O L D\right)^{*}\right\}$
$\}$
$\mathrm{N}^{\prime}=\mathrm{N} _\mathrm{NEW} ; \mathrm{T}^{\prime}=\mathrm{T} ; \mathrm{S}^{\prime}=\mathrm{S} ;$
$P^{\prime}=\left\{p \mid\right.$ all symbols of p are in $\left.N^{\prime} \cup T^{\prime}\right\}$

Testing for $S \Rightarrow^{*} \alpha \boldsymbol{X} \beta$

$\mathrm{G}^{\prime}=\left(\mathrm{N}^{\prime}, \mathrm{T}^{\prime}, \mathrm{P}^{\prime}, \mathrm{S}^{\prime}\right)$ is the new grammar
$N^{\prime}=\{S\} ;$
Repeat \{
for each production $A \rightarrow \alpha_{1}\left|\alpha_{2}\right| \ldots \mid \alpha_{n}$ with $\boldsymbol{A} \in N^{\prime}$ do add all nonterminals of $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ to N^{\prime} and all terminals of $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ to T^{\prime}
\} until there is no change in N^{\prime} and T^{\prime}
$P^{\prime}=\left\{p \mid\right.$ all symbols of p are in $\left.N^{\prime} \cup T^{\prime}\right\} ; S^{\prime}=S$

