#### Syntax Analysis:

#### Context-free Grammars, Pushdown Automata and Parsing Part - 2

#### Y.N. Srikant

#### Department of Computer Science and Automation Indian Institute of Science Bangalore 560 012

#### NPTEL Course on Principles of Compiler Design

- What is syntax analysis? (covered in lecture 1)
- Specification of programming languages: context-free grammars (covered in lecture 1)
- Parsing context-free languages: push-down automata
- Top-down parsing: LL(1) and recursive-descent parsing
- Bottom-up parsing: LR-parsing

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

#### Pushdown Automata

A PDA *M* is a system  $(Q, \Sigma, \Gamma, \delta, q_0, z_0, F)$ , where

- Q is a finite set of states
- Σ is the input alphabet
- Γ is the stack alphabet
- $q_0 \in Q$  is the start state
- $z_0 \in \Gamma$  is the start symbol on stack (initialization)

• 
$$F \subseteq Q$$
 is the set of final states

δ is the transition function, Q × Σ ∪ {ε} × Γ to finite subsets of Q × Γ\*

A typical entry of  $\delta$  is given by

 $\delta(q, a, z) = \{(p_1, \gamma_1), ((p_2, \gamma_2), ..., (p_m, \gamma_m))\}$ 

The PDA in state q, with input symbol a and top-of-stack symbol z, can enter any of the states  $p_i$ , replace the symbol zby the string  $\gamma_i$ , and advance the input head by one symbol.

イロト 不得 とくほ とくほ とうほ

## Pushdown Automata (contd.)

- The leftmost symbol of  $\gamma_i$  will be the new top of stack
- *a* in the above function δ could be ε, in which case, the input symbol is not used and the input head is not advanced
- For a PDA *M*, we define *L*(*M*), the language accepted by *M* by final state, to be
   *L*(*M*) = {*w* | (*q*<sub>0</sub>, *w*, *Z*<sub>0</sub>) ⊢\* (*p*, *ε*, *γ*), for some *p* ∈ *F* and
   *γ* ∈ Γ\*}
- We define N(M), the language accepted by M by empty stack, to be
   N(M) = {w | (q₀, w, Z₀) ⊢\* (p, ϵ, ϵ), for some p ∈ Q

• When acceptance is by empty stack, the set of final states

is irrelevant, and usually, we set  $F = \phi$ 

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ●

• 
$$L = \{0^{n}1^{n} \mid n \ge 0\}$$
  
 $M = (\{q_{0}, q_{1}, q_{2}, q_{3}\}, \{0, 1\}, \{Z, 0\}, \delta, q_{0}, Z, \{q_{0}\}), \text{ where } \delta$   
is defined as follows  
 $\delta(q_{0}, 0, Z) = \{(q_{1}, 0Z)\}, \ \delta(q_{1}, 0, 0) = \{(q_{1}, 00)\}, \delta(q_{1}, 1, 0) = \{(q_{2}, \epsilon)\}, \ \delta(q_{2}, 1, 0) = \{(q_{2}, \epsilon)\}, \delta(q_{2}, \epsilon, Z) = \{(q_{0}, \epsilon)\}$ 

- $(q_0, 0011, Z) \vdash (q_1, 011, 0Z) \vdash (q_1, 11, 00Z) \vdash (q_2, 1, 0Z) \vdash (q_2, \epsilon, Z) \vdash (q_0, \epsilon, \epsilon)$
- $(q_0, 001, Z) \vdash (q_1, 01, 0Z) \vdash (q_1, 1, 00Z) \vdash (q_2, \epsilon, 0Z) \vdash error$
- $(q_0, 010, Z) \vdash (q_1, 10, 0Z) \vdash (q_2, 0, Z) \vdash error$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

#### PDA - Examples (contd.)

• 
$$L = \{ww^R \mid w \in \{a, b\}^+\}$$
  
 $M = (\{q_0, q_1, q_2\}, \{a, b\}, \{Z, a, b\}, \delta, q_0, Z, \{q_2\}), \text{ where } \delta$   
is defined as follows  
 $\delta(q_0, a, Z) = \{(q_0, aZ)\}, \ \delta(q_0, b, Z) = \{(q_0, bZ)\}, \delta(q_0, a, a) = \{(q_0, aa), (q_1, \epsilon)\}, \ \delta(q_0, a, b) = \{(q_0, ab)\}, \delta(q_0, b, b) = \{(q_0, bb), (q_1, \epsilon)\}, \delta(q_1, a, a) = \{(q_1, \epsilon)\}, \ \delta(q_1, \epsilon, Z) = \{(q_2, \epsilon)\}$ 

- $(q_0, abba, Z) \vdash (q_0, bba, aZ) \vdash (q_0, ba, baZ) \vdash (q_1, a, aZ) \vdash (q_1, \epsilon, Z) \vdash (q_2, \epsilon, \epsilon)$
- $(q_0, aaa, Z) \vdash (q_0, aa, aZ) \vdash (q_0, a, aaZ) \vdash (q_1, \epsilon, aZ) \vdash error$
- $(q_0, aaa, Z) \vdash (q_0, aa, aZ) \vdash (q_1, a, Z) \vdash error$

#### Nondeterministic and Deterministic PDA

- Just as in the case of NFA and DFA, PDA also have two versions: NPDA and DPDA
- However, NPDA are strictly more powerful than the DPDA
- For example, the language,  $L = \{ww^R \mid w \in \{a, b\}^+\}$  can be recognized only by an NPDA and not by any DPDA
- In the same breath, the language,
   L = {wcw<sup>R</sup> | w ∈ {a, b}<sup>+</sup>}, can be recognized by a DPDA
- In practice we need DPDA, since they have exactly one possible move at any instant
- Our parsers are all DPDA

# Parsing

- Parsing is the process of constructing a parse tree for a sentence generated by a given grammar
- If there are no restrictions on the language and the form of grammar used, parsers for context-free languages require O(n<sup>3</sup>) time (n being the length of the string parsed)
  - Cocke-Younger-Kasami's algorithm
  - Earley's algorithm
- Subsets of context-free languages typically require *O*(*n*) time
  - Predictive parsing using *LL*(1) grammars (top-down parsing method)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

• Shift-Reduce parsing using *LR*(1) grammars (bottom-up parsing method)

# **Top-Down Parsing using LL Grammars**

- Top-down parsing using predictive parsing, traces the left-most derivation of the string while constructing the parse tree
- Starts from the start symbol of the grammar, and "predicts" the next production used in the derivation
- Such "prediction" is aided by parsing tables (constructed) off-line)
- The next production to be used in the derivation is determined using the next input symbol to lookup the parsing table (look-ahead symbol)
- Placing restrictions on the grammar ensures that no slot in the parsing table contains more than one production
- At the time of parsing table construction, if two productions become eligible to be placed in the same slot of the parsing table, the grammar is declared unfit for predictive parsing

#### Top-Down LL-Parsing Example



Y.N. Srikant

Parsing

## LL(1) Parsing Algorithm



Initial configuration: Stack = S, Input = w\$, where, S = start symbol, \$ = end of file marker repeat { let X be the top stack symbol; let *a* be the next input symbol /\*may be \$\*/; if X is a terminal symbol or \$ then if X == a then { pop X from Stack; remove a from input; } else ERROR(); else /\* X is a non-terminal symbol \*/ if  $M[X,a] == X \rightarrow Y_1 Y_2 \dots Y_k$  then { pop X from Stack: push  $Y_{k}$ ,  $Y_{k-1}$ , ...,  $Y_1$  onto Stack;  $(Y_1 \text{ on top})$ } until Stack has emptied;

# LL(1) Parsing Algorithm Example



# Strong LL(k) Grammars

Let the given grammar be G

- Input is extended with k symbols, \$<sup>k</sup>, k is the lookahead of the grammar
- Introduce a new nonterminal S', and a production, S' → S\$<sup>k</sup>, where S is the start symbol of the given grammar
- Consider leftmost derivations only and assume that the grammar has no *useless symbols*
- A production A → α in G is called a *strong LL(k)* production, if in G
   S' ⇒\* wAγ ⇒ wαγ ⇒\* wzy
   S' ⇒\* w'Aδ ⇒ w'βδ ⇒\* w'zx
  - $|z| = k, \ z \in \Sigma^*, w \text{ and } w' \in \Sigma^*, \text{ then } \alpha = \beta$
- A grammar (nonterminal) is strong LL(k) if all its productions are strong LL(k)

◆□▶ ◆□▶ ◆目▶ ◆目▶ □目 − ∽へ⊙

# Strong LL(k) Grammars (contd.)

- Strong LL(k) grammars do not allow different productions of the same nonterminal to be used even in two different derivations, if the first *k* symbols of the strings produced by  $\alpha\gamma$  and  $\beta\delta$  are the same
- Example:  $S \rightarrow Abc | aAcb, A \rightarrow \epsilon | b | c$ S is a strong LL(1) nonterminal
  - S' ⇒ S\$ ⇒ Abc\$ ⇒ bc\$, bbc\$, and cbc\$, on application of the productions, A → ε, A → b, and, A → c, respectively.
     z = b, b, or c, respectively
  - S' ⇒ S\$ ⇒ aAcb\$ ⇒ acb\$, abcb\$, and accb\$, on application of the productions, A → ε, A → b, and, A → c, respectively. z = a, in all three cases
  - In this case, w = w' = ε, α = Abc, β = aAcb, but z is different in the two derivations, in all the derived strings

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Hence the nonterminal S is strong LL(1)

A is not strong LL(1)

- $S' \Rightarrow^* Abc\$ \Rightarrow \underline{b}c\$$ ,  $w = \epsilon$ , z = b,  $\alpha = \epsilon (A \to \epsilon)$  $S' \Rightarrow^* Abc\$ \Rightarrow \underline{b}bc\$$ ,  $w' = \epsilon$ , z = b,  $\beta = b (A \to b)$
- Even though the lookaheads are the same (z = b), α ≠ β, and therefore, the grammar is not strong LL(1)
- A is not strong LL(2)

• 
$$S' \Rightarrow^* Abc\$ \Rightarrow \underline{bc}\$$$
,  $w = \epsilon$ ,  $z = bc$ ,  $\alpha = \epsilon (A \to \epsilon)$   
 $S' \Rightarrow^* aAcb\$ \Rightarrow \underline{abc}b\$$ ,  $w' = a$ ,  $z = bc$ ,  $\beta = b (A \to b)$ 

 Even though the lookaheads are the same (z = bc), α ≠ β, and therefore, the grammar is not strong LL(2)

A is strong LL(3) because all the six strings (*bc\$, bbc, cbc, cb\$, bcb, ccb*) can be distinguished using 3-symbol lookahead (details are for home work)

## Testable Conditions for LL(1)

- We call strong LL(1) as LL(1) from now on and we will not consider lookaheads longer than 1
- The classical condition for LL(1) property uses *FIRST* and *FOLLOW* sets
- If  $\alpha$  is any string of grammar symbols ( $\alpha \in (N \cup T)^*$ ), then  $FIRST(\alpha) = \{a \mid a \in T, and \alpha \Rightarrow^* ax, x \in T^*\}$  $FIRST(\epsilon) = \{\epsilon\}$
- If A is any nonterminal, then  $FOLLOW(A) = \{a \mid S \Rightarrow^* \alpha Aa\beta, \ \alpha, \beta \in (N \cup T)^*, a \in T \cup \{\$\}\}$
- *FIRST*(α) is determined by α alone, but *FOLLOW*(A) is determined by the "context" of A, i.e., the derivations in which A occurs

# FIRST and FOLLOW Computation Example

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

```
for each (a \in T) FIRST(a) = \{a\}; FIRST(\epsilon) = \{\epsilon\};
for each (A \in N) FIRST(A) = \emptyset;
while (FIRST sets are still changing) {
    for each production p {
       Let p be the production A \rightarrow X_1 X_2 \dots X_n;
       FIRST(A) = FIRST(A) \cup (FIRST(X_1) - \{\epsilon\});
       i = 1:
       while (\epsilon \in \text{FIRST}(X_i) \&\& i < n-1) {
           FIRST(A) = FIRST(A) \cup (FIRST(X_{i+1} - \{\epsilon\}); i + +;
       if (i == n) && (\epsilon \in \text{FIRST}(X_n))
          FIRST(A) = FIRST(A) \cup \{\epsilon\}
```

イロト 不得 とくほ とくほ とうほ