Syntax Analysis:

Context-free Grammars, Pushdown Automata and Parsing
Part - 1

Y.N. Srikant

Department of Computer Science and Automation
Indian Institute of Science
Bangalore 560 012

NPTEL Course on Principles of Compiler Design

Y.N. Srikant Parsing

Outline of the Lecture

@ What is syntax analysis?

@ Specification of programming languages: context-free
grammars

@ Parsing context-free languages: push-down automata
@ Top-down parsing: LL(1) and recursive-descent parsing
@ Bottom-up parsing: LR-parsing

Y.N. Srikant Parsing

Grammars

@ Every programming language has precise grammar rules
that describe the syntactic structure of well-formed
programs

e In C, the rules state how functions are made out of
parameter lists, declarations, and statements; how
statements are made of expressions, etc.

@ Grammars are easy to understand, and parsers for
programming languages can be constructed automatically
from certain classes of grammars

@ Parsers or syntax analyzers are generated for a particular
grammar

@ Context-free grammars are usually used for syntax
specification of programming languages

Y.N. Srikant Parsing

What is Parsing or Syntax Analysis?

@ A parser for a grammar of a programming language

verifies that the string of tokens for a program in that
language can indeed be generated from that grammar
reports any syntax errors in the program

constructs a parse tree representation of the program (not
necessarily explicit)

usually calls the lexical analyzer to supply a token to it
when necessary

could be hand-written or automatically generated

is based on context-free grammars

@ Grammars are generative mechanisms like regular
expressions

@ Pushdown automata are machines recognizing
context-free languages (like FSA for RL)

Y.N. Srikant Parsing

Context-free Grammars

@ ACFGisdenotedas G= (N, T,P,S)
e N: Finite set of non-terminals
o T: Finite set of terminals
@ S € N:The start symbol
e P: Finite set of productions, each of the form A — «, where
A€ Nanda € (NUT)*
@ Usually, only P is specified and the first production
corresponds to that of the start symbol

@ Examples
(1) (2) 3) (4)

E—-E+E S—0S0 S—aSh S — aB|bA
E—-ExE S—151 S—e¢ A— alaS | bAA

E— (E) S—0 B— b|bS|aBB
E —id S—1
S —e€

Y.N. Srikant Parsing

Derivations

@ E=EFEEE L FoERd g L E=Eod g 4 jd
is a derivation of the terminal string id + id from E

@ In a derivation, a production is applied at each step, to
replace a nonterminal by the right-hand side of the
corresponding production

@ In the above example, the productions E — E+ E, E — id,
and E — id, are applied at steps 1,2, and, 3 respectively

@ The above derivation is represented in short as,
E =*id +id, and is read as S derives id + id

Y.N. Srikant Parsing

Context-free Languages

@ Context-free grammars generate context-free languages
(grammar and language resp.)
@ The language generated by G, denoted L(G), is
L(G)={w|w €T* and S =* w}
i.e., astring is in L(G), if
@ the string consists solely of terminals
@ the string can be derived from S
@ Examples

@ L(Gj) = Set of all expressions with +, *, names, and
balanced’(" and’y’

© L(Gy) = Set of palindromes over 0 and 1

Q L(Gs)={a"b"| n>0}

©Q L(Gy) = {x| x has equal no. of s and b's}

@ Astringa € (NUT)* is a sentential form if S =* o
@ Two grammars G; and G, are equivalent, if L(Gy) = L(G2)

Y.N. Srikant Parsing

Derivation Trees

@ Derivations can be displayed as trees

@ The internal nodes of the tree are all nonterminals and the
leaves are all terminals

@ Corresponding to each internal node A, there exists a
production € P, with the RHS of the production being the
list of children of A, read from left to right

@ The yield of a derivation tree is the list of the labels of all
the leaves read from left to right

@ If ais the yield of some derivation tree for a grammar G,
then S =* a and conversely

Y.N. Srikant Parsing

Derivation Tree Example

S>aAS|a
A-> SbA|SS|ba

S => aAS => aSbAS => aabAS => aabba$ => aabbaa

Y.N. Srikant Parsing

Leftmost and Rightmost Derivations

@ If at each step in a derivation, a production is applied to the
leftmost nonterminal, then the derivation is said to be
leftmost. Similarly rightmost derivation.

e If w € L(G) for some G, then w has at least one parse
tree and corresponding to a parse tree, w has unique
leftmost and rightmost derivations

@ If some word w in L(G) has two or more parse trees, then
G is said to be ambiguous

@ A CFL for which every G is ambiguous, is said to be an
inherently ambiguous CFL

Y.N. Srikant Parsing

Leftmost and Rightmost Derivations: An Example

S > aAsS |a
A > SbA|SS | ba

Leftmost derivation: S => aAS => aSbAS => aabAS => aabba$S => aabbaa

Rightmost derivation: § => aAS => aAa => aSbAa => aSbbaa => aabbaa

Y.N. Srikant Parsing

Ambiguous Grammar Examples

@ The grammar, E — E + E|E « E|(E)|id
is ambiguous, but the following grammar for the same
language is unambiguous
E—-E+T|T, T—TxF|F, F— (E)|id
@ The grammar,
stmt — IF expr stmt|IF expr stmt ELSE stmt|other_stmt

is ambiguous, but the following equivalent grammar is not

stmt — IF expr stmt|IF expr matched_stmt ELSE stmt

matched _stmt —

IF expr matched_stmt ELSE matched _stmt|other_stmt
@ The language,

L={a"b"c™d™ | nm>1}u{a"bmc™d" | n,m> 1},

is inherently ambiguous

Y.N. Srikant Parsing

Ambiguity Example 1

€
E ®) ® ©
® © ® W @

:

E => E+E => E*E+E => Id*E+E => id*id+E => id"id+id

E—m >—m

E => E*E => id"E => id*E+E => id"id+E => id*id+id

E->E+E|E*E|(E) | id

Y.N. Srikant Parsing

Equivalent Unambiguous Grammar

E>E+T|T
T>TF|F
F-(E)|id

E => E+T => T+T => F+T => id+T => id+T*F => id+F*F => id+id*F => id+id*id

E => T*F => F*F => (E)*F => (E+T)*F => (T+T)'F => (F+T)F => (id+T)*F
=> (id+F)*id => (id+id)*F => (id+id)*id

Y.N. Srikant Parsing

Ambiguity Example 2

Two parse trees for the sentence
IF el IF e2 s1 ELSE s2
using the ambiguous grammar

Y.N. Srikant Parsing

Ambiguity Example 2 (contd.)

The parse tree for the sentence
IF el IF e2 s1 ELSE s2
using the unambiguous grammar

s>IFe s | IFe msELSE s
ms > IFe ms ELSE ms | other_s

Y.N. Srikant Parsing

Fragment of C-Grammar (Statements)

program ——-> VOID MAIN ’ (" 7))’ compound_stmt
compound_stmt —--> " {’ "}’ | ' {’ stmt_list "}’

| ’"{’ declaration_list stmt_list "}’
stmt_list ——> stmt | stmt_list stmt

stmt —--> compound_stmt| expression_stmt
| 1if_stmt | while_stmt
expression_stmt —--> ’;’ | expression ;'
if _stmt —--> IF ' (' expression ")’ stmt
| IF ' (' expression ')’ stmt ELSE stmt
while_stmt --> WHILE ’ (’ expression ')’ stmt
expression —-—-> assignment_expr

| expression ’,’ assignment_expr

Y.N. Srikant Parsing

Fragment of C-Grammar (Expressions)

assignment_expr —--> logical_or_expr
| unary_expr assign_op assignment_expr
assign_op —-—-> ’'=’| MUL_ASSIGN| DIV_ASSIGN
| ADD_ASSIGN| SUB_ASSIGN
| AND_ASSIGN| OR_ASSIGN
unary_expr —-—> primary_expr
| unary_operator unary_expr
unary_operator —-> '+ | =" | 11/
primary_expr —--> ID| NUM| ’ ('’ expression ')’
logical_or_expr —-—> logical_and_expr
| logical_or_expr OR_OP logical_and_expr
logical_and_expr ——> equality_expr
| logical_and_expr AND_OP equality_expr
equality_expr ——-> relational_expr
| equality_expr EQ OP relational_expr
| equality_expr NE_OP relational_expr

Y.N. Srikant Parsing

Fragment of C-Grammar (Expressions and
Declarations)

relational_expr —--> add_expr
| relational_expr ’'<’' add_expr
| relational_expr ’'>' add_expr
| relational_expr LE_OP add_expr
| relational_expr GE_OP add_expr
add_expr —-—> mult_expr| add_expr '+’ mult_expr
| add_expr '—-' mult_expr

mult_expr ——-> unary_expr| mult_expr ’'*’ unary_expr
| mult_expr '/’ unary_expr
declarationlist —--> declaration

| declarationlist declaration
declaration —--> type idlist ’;’
idlist --> idlist ’,’” ID | ID
type ——> INT_TYPE | FLOAT_TYPE | CHAR_TYPE

Y.N. Srikant Parsing

Pushdown Automata

A PDA Mis a system (Q, X, T, 4, qo, 20, F), where
@ Qs a finite set of states
@ X is the input alphabet
@ [is the stack alphabet
@ go € Qisthe start state
@ zy € T isthe start symbol on stack (initialization)
@ F C Qis the set of final states
o

J is the transition function, Q x ¥ U {e} x I to finite subsets
of @ xT*

A typical entry of § is given by

5(q7 a, Z) = {(p1 » N)7 ((p27 72)7 ey (pm, ’Ym)}

The PDA in state g, with input symbol a and top-of-stack
symbol z, can enter any of the states p;, replace the symbol z
by the string ~;, and advance the input head by one symbol.

Y.N. Srikant Parsing

Pushdown Automata (contd.)

@ The leftmost symbol of ~; will be the new top of stack

a in the above function ¢ could be ¢, in which case, the
input symbol is not used and the input head is not
advanced

For a PDA M, we define L(M), the language accepted by
M by final state, to be

L(M)={w| (qo,w,Z) F* (p,¢,7), forsome p € F and
v €}

We define N(M), the language accepted by M by empty
stack, to be

N(M) ={w | (qo, w, Zy) H* (p,¢,¢€), forsome p € Q
When acceptance is by empty stack, the set of final states
is irrelevant, and usually, we set F = ¢

Y.N. Srikant Parsing

PDA - Examples

e L=1{0""|n>0}

M = ({q07 g1, Qo, q3}a {07 1 }) {Za 0}> 57 o, Z, {Qo}), where §
is defined as follows

(90,0, 2Z) = {(a1,02)}, d(a1,0,0) = {(g1,00)},
5(91,1,0) = {(g2,€)}, (q2,1,0) = {(q2; €)},
0(q2,¢6,Z) = {(qo, €)}

@ (qo,0011,2) + (gy,011,02) - (gy,11,002) F (g»,1,02) +
(q2767 Z) k- (quevf)

@ (Go,001,2) + (g1,01,02) + (g1,1,002) + (g2, €,02)
error

@ (go,010,2) + (g1,10,02) - (o, 0, Z) + error

Y.N. Srikant Parsing

