
Syntax Analysis:
Context-free Grammars, Pushdown Automata and Parsing

Part - 1

Y.N. Srikant

Department of Computer Science and Automation
Indian Institute of Science

Bangalore 560 012

NPTEL Course on Principles of Compiler Design

Y.N. Srikant Parsing

Outline of the Lecture

What is syntax analysis?
Specification of programming languages: context-free
grammars
Parsing context-free languages: push-down automata
Top-down parsing: LL(1) and recursive-descent parsing
Bottom-up parsing: LR-parsing

Y.N. Srikant Parsing

Grammars

Every programming language has precise grammar rules
that describe the syntactic structure of well-formed
programs

In C, the rules state how functions are made out of
parameter lists, declarations, and statements; how
statements are made of expressions, etc.

Grammars are easy to understand, and parsers for
programming languages can be constructed automatically
from certain classes of grammars
Parsers or syntax analyzers are generated for a particular
grammar
Context-free grammars are usually used for syntax
specification of programming languages

Y.N. Srikant Parsing

What is Parsing or Syntax Analysis?

A parser for a grammar of a programming language
verifies that the string of tokens for a program in that
language can indeed be generated from that grammar
reports any syntax errors in the program
constructs a parse tree representation of the program (not
necessarily explicit)
usually calls the lexical analyzer to supply a token to it
when necessary
could be hand-written or automatically generated
is based on context-free grammars

Grammars are generative mechanisms like regular
expressions
Pushdown automata are machines recognizing
context-free languages (like FSA for RL)

Y.N. Srikant Parsing

Context-free Grammars

A CFG is denoted as G = (N,T ,P,S)

N: Finite set of non-terminals
T : Finite set of terminals
S ∈ N: The start symbol
P: Finite set of productions, each of the form A→ α, where
A ∈ N and α ∈ (N ∪ T)∗

Usually, only P is specified and the first production
corresponds to that of the start symbol
Examples

(1) (2) (3) (4)
E → E + E S → 0S0 S → aSb S → aB | bA
E → E ∗ E S → 1S1 S → ε A→ a | aS | bAA
E → (E) S → 0 B → b | bS | aBB
E → id S → 1

S → ε

Y.N. Srikant Parsing

Derivations

E ⇒E→E+E E + E ⇒E→id id + E ⇒E→id id + id
is a derivation of the terminal string id + id from E
In a derivation, a production is applied at each step, to
replace a nonterminal by the right-hand side of the
corresponding production
In the above example, the productions E → E + E , E → id ,
and E → id , are applied at steps 1,2, and, 3 respectively
The above derivation is represented in short as,
E ⇒∗ id + id , and is read as S derives id + id

Y.N. Srikant Parsing

Context-free Languages

Context-free grammars generate context-free languages
(grammar and language resp.)
The language generated by G, denoted L(G), is
L(G) = {w | w ∈ T ∗, and S ⇒∗ w}
i.e., a string is in L(G), if

1 the string consists solely of terminals
2 the string can be derived from S

Examples
1 L(G1) = Set of all expressions with +, *, names, and

balanced ’(’ and ’)’
2 L(G2) = Set of palindromes over 0 and 1
3 L(G3) = {anbn | n ≥ 0}
4 L(G4) = {x | x has equal no. of a′s and b′s}

A string α ∈ (N ∪ T)∗ is a sentential form if S ⇒∗ α
Two grammars G1 and G2 are equivalent, if L(G1) = L(G2)

Y.N. Srikant Parsing

Derivation Trees

Derivations can be displayed as trees
The internal nodes of the tree are all nonterminals and the
leaves are all terminals
Corresponding to each internal node A, there exists a
production ∈ P, with the RHS of the production being the
list of children of A, read from left to right
The yield of a derivation tree is the list of the labels of all
the leaves read from left to right
If α is the yield of some derivation tree for a grammar G,
then S ⇒∗ α and conversely

Y.N. Srikant Parsing

Derivation Tree Example

Y.N. Srikant Parsing

Leftmost and Rightmost Derivations

If at each step in a derivation, a production is applied to the
leftmost nonterminal, then the derivation is said to be
leftmost. Similarly rightmost derivation.
If w ∈ L(G) for some G, then w has at least one parse
tree and corresponding to a parse tree, w has unique
leftmost and rightmost derivations
If some word w in L(G) has two or more parse trees, then
G is said to be ambiguous
A CFL for which every G is ambiguous, is said to be an
inherently ambiguous CFL

Y.N. Srikant Parsing

Leftmost and Rightmost Derivations: An Example

Y.N. Srikant Parsing

Ambiguous Grammar Examples

The grammar, E → E + E |E ∗ E |(E)|id
is ambiguous, but the following grammar for the same
language is unambiguous
E → E + T |T , T → T ∗ F |F , F → (E)|id
The grammar,
stmt → IF expr stmt |IF expr stmt ELSE stmt |other_stmt

is ambiguous, but the following equivalent grammar is not

stmt → IF expr stmt |IF expr matched_stmt ELSE stmt
matched_stmt →
IF expr matched_stmt ELSE matched_stmt |other_stmt
The language,
L = {anbncmdm | n,m ≥ 1} ∪ {anbmcmdn | n,m ≥ 1},
is inherently ambiguous

Y.N. Srikant Parsing

Ambiguity Example 1

Y.N. Srikant Parsing

Equivalent Unambiguous Grammar

Y.N. Srikant Parsing

Ambiguity Example 2

Y.N. Srikant Parsing

Ambiguity Example 2 (contd.)

Y.N. Srikant Parsing

Fragment of C-Grammar (Statements)

program --> VOID MAIN ’(’ ’)’ compound_stmt
compound_stmt --> ’{’ ’}’ | ’{’ stmt_list ’}’

| ’{’ declaration_list stmt_list ’}’
stmt_list --> stmt | stmt_list stmt
stmt --> compound_stmt| expression_stmt

| if_stmt | while_stmt
expression_stmt --> ’;’| expression ’;’
if_stmt --> IF ’(’ expression ’)’ stmt

| IF ’(’ expression ’)’ stmt ELSE stmt
while_stmt --> WHILE ’(’ expression ’)’ stmt
expression --> assignment_expr

| expression ’,’ assignment_expr

Y.N. Srikant Parsing

Fragment of C-Grammar (Expressions)

assignment_expr --> logical_or_expr
| unary_expr assign_op assignment_expr

assign_op --> ’=’| MUL_ASSIGN| DIV_ASSIGN
| ADD_ASSIGN| SUB_ASSIGN
| AND_ASSIGN| OR_ASSIGN

unary_expr --> primary_expr
| unary_operator unary_expr

unary_operator --> ’+’| ’-’| ’!’
primary_expr --> ID| NUM| ’(’ expression ’)’
logical_or_expr --> logical_and_expr

| logical_or_expr OR_OP logical_and_expr
logical_and_expr --> equality_expr

| logical_and_expr AND_OP equality_expr
equality_expr --> relational_expr

| equality_expr EQ_OP relational_expr
| equality_expr NE_OP relational_expr

Y.N. Srikant Parsing

Fragment of C-Grammar (Expressions and
Declarations)

relational_expr --> add_expr
| relational_expr ’<’ add_expr
| relational_expr ’>’ add_expr
| relational_expr LE_OP add_expr
| relational_expr GE_OP add_expr

add_expr --> mult_expr| add_expr ’+’ mult_expr
| add_expr ’-’ mult_expr

mult_expr --> unary_expr| mult_expr ’*’ unary_expr
| mult_expr ’/’ unary_expr

declarationlist --> declaration
| declarationlist declaration

declaration --> type idlist ’;’
idlist --> idlist ’,’ ID | ID
type --> INT_TYPE | FLOAT_TYPE | CHAR_TYPE

Y.N. Srikant Parsing

Pushdown Automata

A PDA M is a system (Q,Σ, Γ, δ,q0, z0,F), where
Q is a finite set of states
Σ is the input alphabet
Γ is the stack alphabet
q0 ∈ Q is the start state
z0 ∈ Γ is the start symbol on stack (initialization)
F ⊆ Q is the set of final states
δ is the transition function, Q × Σ ∪ {ε} × Γ to finite subsets
of Q × Γ∗

A typical entry of δ is given by
δ(q,a, z) = {(p1, γ1), ((p2, γ2), ..., (pm, γm)}
The PDA in state q, with input symbol a and top-of-stack
symbol z, can enter any of the states pi , replace the symbol z
by the string γi , and advance the input head by one symbol.

Y.N. Srikant Parsing

Pushdown Automata (contd.)

The leftmost symbol of γi will be the new top of stack
a in the above function δ could be ε, in which case, the
input symbol is not used and the input head is not
advanced
For a PDA M, we define L(M), the language accepted by
M by final state, to be
L(M) = {w | (q0,w ,Z0) `∗ (p, ε, γ), for some p ∈ F and
γ ∈ Γ∗}
We define N(M), the language accepted by M by empty
stack, to be
N(M) = {w | (q0,w ,Z0) `∗ (p, ε, ε), for some p ∈ Q
When acceptance is by empty stack, the set of final states
is irrelevant, and usually, we set F = φ

Y.N. Srikant Parsing

PDA - Examples

L = {0n1n | n ≥ 0}
M = ({q0,q1,q2,q3}, {0,1}, {Z ,0}, δ,q0,Z , {q0}), where δ
is defined as follows
δ(q0,0,Z) = {(q1,0Z)}, δ(q1,0,0) = {(q1,00)},
δ(q1,1,0) = {(q2, ε)}, δ(q2,1,0) = {(q2, ε)},
δ(q2, ε,Z) = {(q0, ε)}
(q0,0011,Z) ` (q1,011,0Z) ` (q1,11,00Z) ` (q2,1,0Z) `
(q2, ε,Z) ` (q0, ε, ε)

(q0,001,Z) ` (q1,01,0Z) ` (q1,1,00Z) ` (q2, ε,0Z) `
error
(q0,010,Z) ` (q1,10,0Z) ` (q2,0,Z) ` error

Y.N. Srikant Parsing

