Syntax Analysis:

Context-free Grammars, Pushdown Automata and Parsing Part - 1

Y.N. Srikant

Department of Computer Science and Automation Indian Institute of Science

Bangalore 560012

NPTEL Course on Principles of Compiler Design

Outline of the Lecture

- What is syntax analysis?
- Specification of programming languages: context-free grammars
- Parsing context-free languages: push-down automata
- Top-down parsing: LL(1) and recursive-descent parsing
- Bottom-up parsing: LR-parsing

Grammars

- Every programming language has precise grammar rules that describe the syntactic structure of well-formed programs
- In C, the rules state how functions are made out of parameter lists, declarations, and statements; how statements are made of expressions, etc.
- Grammars are easy to understand, and parsers for programming languages can be constructed automatically from certain classes of grammars
- Parsers or syntax analyzers are generated for a particular grammar
- Context-free grammars are usually used for syntax specification of programming languages

What is Parsing or Syntax Analysis?

- A parser for a grammar of a programming language
- verifies that the string of tokens for a program in that language can indeed be generated from that grammar
- reports any syntax errors in the program
- constructs a parse tree representation of the program (not necessarily explicit)
- usually calls the lexical analyzer to supply a token to it when necessary
- could be hand-written or automatically generated
- is based on context-free grammars
- Grammars are generative mechanisms like regular expressions
- Pushdown automata are machines recognizing context-free languages (like FSA for RL)

Context-free Grammars

- A CFG is denoted as $G=(N, T, P, S)$
- N : Finite set of non-terminals
- T : Finite set of terminals
- $S \in N$: The start symbol
- P: Finite set of productions, each of the form $A \rightarrow \alpha$, where $A \in N$ and $\alpha \in(N \cup T)^{*}$
- Usually, only P is specified and the first production corresponds to that of the start symbol
- Examples
(1)
(2)
(3)
(4)
$E \rightarrow E+E$
$S \rightarrow 0 S 0$
$S \rightarrow a S b$
$S \rightarrow a B \mid b A$
$E \rightarrow E * E$
$S \rightarrow 1 S 1$
$S \rightarrow \epsilon$
$A \rightarrow a|a S| b A A$
$E \rightarrow(E) \quad S \rightarrow 0$
$B \rightarrow b|b S| a B B$
$E \rightarrow i d$ $S \rightarrow 1$
$S \rightarrow \epsilon$

Derivations

- $E \Rightarrow{ }^{E \rightarrow E+E} E+E \Rightarrow{ }^{E \rightarrow i d} i d+E \Rightarrow{ }^{E \rightarrow i d} i d+i d$ is a derivation of the terminal string id $+i d$ from E
- In a derivation, a production is applied at each step, to replace a nonterminal by the right-hand side of the corresponding production
- In the above example, the productions $E \rightarrow E+E, E \rightarrow i d$, and $E \rightarrow i d$, are applied at steps 1,2 , and, 3 respectively
- The above derivation is represented in short as, $E \Rightarrow * i d+i d$, and is read as S derives id $+i d$

Context-free Languages

- Context-free grammars generate context-free languages (grammar and language resp.)
- The language generated by G, denoted $L(G)$, is $L(G)=\left\{w \mid w \in T^{*}\right.$, and $\left.S \Rightarrow^{*} w\right\}$
i.e., a string is in $L(G)$, if
(O) the string consists solely of terminals
(2) the string can be derived from S
- Examples
(1) $L\left(G_{1}\right)=$ Set of all expressions with + , , names, and balanced '(' and ')'
(2) $L\left(G_{2}\right)=$ Set of palindromes over 0 and 1
(3) $L\left(G_{3}\right)=\left\{a^{n} b^{n} \mid n \geq 0\right\}$
(0) $L\left(G_{4}\right)=\left\{x \mid x\right.$ has equal no. of a's and $\left.b^{\prime} s\right\}$
- A string $\alpha \in(N \cup T)^{*}$ is a sentential form if $S \Rightarrow^{*} \alpha$
- Two grammars G_{1} and G_{2} are equivalent, if $L\left(G_{1}\right)=L\left(G_{2}\right)$

Derivation Trees

- Derivations can be displayed as trees
- The internal nodes of the tree are all nonterminals and the leaves are all terminals
- Corresponding to each internal node A, there exists a production $\in P$, with the RHS of the production being the list of children of A, read from left to right
- The yield of a derivation tree is the list of the labels of all the leaves read from left to right
- If α is the yield of some derivation tree for a grammar G, then $S \Rightarrow^{*} \alpha$ and conversely

Derivation Tree Example

Leftmost and Rightmost Derivations

- If at each step in a derivation, a production is applied to the leftmost nonterminal, then the derivation is said to be leftmost. Similarly rightmost derivation.
- If $w \in L(G)$ for some G, then w has at least one parse tree and corresponding to a parse tree, w has unique leftmost and rightmost derivations
- If some word w in $L(G)$ has two or more parse trees, then G is said to be ambiguous
- A CFL for which every G is ambiguous, is said to be an inherently ambiguous CFL

Leftmost and Rightmost Derivations: An Example

Leftmost derivation: \mathbf{S} => aAS => aSbAS => aabAS => aabbaS => aabbaa

Rightmost derivation: $\mathbf{S ~ = >} \mathrm{aAS}=>\mathrm{aAa}=>\mathrm{aSbAa}=>\mathrm{aSbbaa}=>\mathrm{aabba}$

Ambiguous Grammar Examples

- The grammar, $E \rightarrow E+E|E * E|(E) \mid$ id is ambiguous, but the following grammar for the same language is unambiguous
$E \rightarrow E+T|T, T \rightarrow T * F| F, F \rightarrow(E) \mid i d$
- The grammar,
stmt \rightarrow IF expr stmt|IF expr stmt ELSE stmt|other_stmt
is ambiguous, but the following equivalent grammar is not
stmt \rightarrow IF expr stmt|IF expr matched_stmt ELSE stmt matched_stmt \rightarrow
IF expr matched_stmt ELSE matched_stmt|other_stmt
- The language,
$L=\left\{a^{n} b^{n} c^{m} d^{m} \mid n, m \geq 1\right\} \cup\left\{a^{n} b^{m} c^{m} d^{n} \mid n, m \geq 1\right\}$,
is inherently ambiguous

Ambiguity Example 1

Equivalent Unambiguous Grammar

$$
\begin{aligned}
& E=>E+T=>T+T=>F+T=>i d+T=>i d+T^{\star} F=>i d+F^{\star} F=>\text { id+id*} F=>~ i d+i d^{*} i d \\
& E=>T^{\star} F=>F^{\star} F=>(E)^{\star} F=>(E+T)^{\star} F=>(T+T)^{\star} F=>(F+T)^{*} F=>(i d+T)^{\star} F \\
& =>(i d+F)^{*} i d=>(i d+i d)^{\star} F=>(i d+i d)^{\star} i d
\end{aligned}
$$

Ambiguity Example 2

Ambiguity Example 2 (contd.)

$\mathrm{s} \rightarrow \mathrm{IFes} \mid \mathrm{IFe}$ ms ELSE s $\mathrm{ms} \rightarrow$ IF e ms ELSE ms | other_s

Fragment of C-Grammar (Statements)

program --> VOID MAIN ' (' ')' compound_stmt compound_stmt --> '\{' '\}' | '\{' stmt_list '\}'

$$
\text { | '\{' declaration_list stmt_list '\}' }
$$

stmt_list $-->$ stmt | stmt_list stmt
stmt --> compound_stmt| expression_stmt
| if_stmt | while_stmt
expression_stmt --> ';'| expression ';' if_stmt --> IF ' (' expression ')' stmt
| IF ' (' expression ')' stmt ELSE stmt while_stmt --> WHILE '(' expression ')' stmt expression --> assignment_expr
| expression ',' assignment_expr

Fragment of C-Grammar (Expressions)

$$
\begin{aligned}
& \text { assignment_expr }-->\text { logical_or_expr } \\
& \mid \text { unary_expr assign_op assignment_expr } \\
& \text { assign_op --> } \prime^{\prime}=\prime \left\lvert\, \begin{array}{ll}
\prime & \text { MUL_ASSIGN| DIV_ASSIGN } \\
& \mid \text { ADD_ASSIGN| SUB_ASSIGN } \\
& \mid \text { AND_ASSIGN| OR_ASSIGN }
\end{array}\right.
\end{aligned}
$$

unary_expr --> primary_expr
| unary_operator unary_expr
unary_operator
 '+'| ' -' | '!'
primary_expr --> ID| NUM| '(' expression ')' logical_or_expr --> logical_and_expr
| logical_or_expr OR_OP logical_and_expr logical_and_expr --> equality_expr
| logical_and_expr AND_OP equality_expr
equality_expr --> relational_expr

$$
\begin{aligned}
& \text { equality_expr EQ_OP relational_expr } \\
& \text { equality_expr NE_OP relational_expr }
\end{aligned}
$$

Fragment of C-Grammar (Expressions and Declarations)

relational_expr --> add_expr| relational_expr '<' add_expr
| relational_expr '>' add_expr| relational_expr LE_OP add_expr| relational_expr GE_OP add_expr
add_expr --> mult_expr| add_expr '+' mult_expr
add_expr '-' mult_expr
mult_expr --> unary_expr| mult_expr '*' unary_expr
| mult_expr '/' unary_expr
declarationlist --> declaration
| declarationlist declaration
declaration --> type idlist ';'
idlist --> idlist ',' ID | ID
type --> INT_TYPE | FLOAT_TYPE | CHAR_TYPE

Pushdown Automata

A PDA M is a system $\left(Q, \Sigma, \Gamma, \delta, q_{0}, z_{0}, F\right)$, where

- Q is a finite set of states
- Σ is the input alphabet
- 「 is the stack alphabet
- $q_{0} \in Q$ is the start state
- $z_{0} \in \Gamma$ is the start symbol on stack (initialization)
- $F \subseteq Q$ is the set of final states
- δ is the transition function, $Q \times \Sigma \cup\{\epsilon\} \times \Gamma$ to finite subsets of $Q \times \Gamma^{*}$

A typical entry of δ is given by
$\delta(q, a, z)=\left\{\left(p_{1}, \gamma_{1}\right),\left(\left(p_{2}, \gamma_{2}\right), \ldots,\left(p_{m}, \gamma_{m}\right)\right\}\right.$
The PDA in state q, with input symbol a and top-of-stack symbol z, can enter any of the states p_{i}, replace the symbol z by the string γ_{i}, and advance the input head by one symbol.

Pushdown Automata (contd.)

- The leftmost symbol of γ_{i} will be the new top of stack
- a in the above function δ could be ϵ, in which case, the input symbol is not used and the input head is not advanced
- For a PDA M, we define $L(M)$, the language accepted by M by final state, to be
$L(M)=\left\{w \mid\left(q_{0}, w, Z_{0}\right) \vdash^{*}(p, \epsilon, \gamma)\right.$, for some $p \in F$ and $\left.\gamma \in \Gamma^{*}\right\}$
- We define $N(M)$, the language accepted by M by empty stack, to be
$N(M)=\left\{w \mid\left(q_{0}, w, Z_{0}\right) \vdash^{*}(p, \epsilon, \epsilon)\right.$, for some $p \in Q$
- When acceptance is by empty stack, the set of final states is irrelevant, and usually, we set $F=\phi$

PDA - Examples

- $L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$
$M=\left(\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\},\{0,1\},\{Z, 0\}, \delta, q_{0}, Z,\left\{q_{0}\right\}\right)$, where δ is defined as follows
$\delta\left(q_{0}, 0, Z\right)=\left\{\left(q_{1}, 0 Z\right)\right\}, \delta\left(q_{1}, 0,0\right)=\left\{\left(q_{1}, 00\right)\right\}$,
$\delta\left(q_{1}, 1,0\right)=\left\{\left(q_{2}, \epsilon\right)\right\}, \delta\left(q_{2}, 1,0\right)=\left\{\left(q_{2}, \epsilon\right)\right\}$, $\delta\left(q_{2}, \epsilon, Z\right)=\left\{\left(q_{0}, \epsilon\right)\right\}$
- $\left(q_{0}, 0011, Z\right) \vdash\left(q_{1}, 011,0 Z\right) \vdash\left(q_{1}, 11,00 Z\right) \vdash\left(q_{2}, 1,0 Z\right) \vdash$ $\left(q_{2}, \epsilon, Z\right) \vdash\left(q_{0}, \epsilon, \epsilon\right)$
- $\left(q_{0}, 001, Z\right) \vdash\left(q_{1}, 01,0 Z\right) \vdash\left(q_{1}, 1,00 Z\right) \vdash\left(q_{2}, \epsilon, 0 Z\right) \vdash$ error
- $\left(q_{0}, 010, Z\right) \vdash\left(q_{1}, 10,0 Z\right) \vdash\left(q_{2}, 0, Z\right) \vdash$ error

