
An Overview of a Compiler

Y.N. Srikant

Department of Computer Science and Automation
Indian Institute of Science

Bangalore 560 012

NPTEL Course on Principles of Compiler Design

Y.N. Srikant Compiler Overview



Outline of the Lecture

About the course
Why should we study compiler design?
Compiler overview with block diagrams

Y.N. Srikant Compiler Overview



About the Course

A detailed look at the internals of a compiler
Does not assume any background but is intensive
Doing programming assignments and solving theoretical
problems are both essential
A compiler is an excellent example of theory translated into
practice in a remarkable way

Y.N. Srikant Compiler Overview



Why Should We Study Compiler Design?

Compilers are everywhere!
Many applications for compiler technology

Parsers for HTML in web browser
Interpreters for javascript/flash
Machine code generation for high level languages
Software testing
Program optimization
Malicious code detection
Design of new computer architectures

Compiler-in-the-loop hardware development

Hardware synthesis: VHDL to RTL translation
Compiled simulation

Used to simulate designs written in VHDL
No interpretation of design, hence faster

Y.N. Srikant Compiler Overview



About the Complexity of Compiler Technology

A compiler is possibly the most complex system software
and writing it is a substantial exercise in software
engineering
The complexity arises from the fact that it is required to
map a programmer’s requirements (in a HLL program) to
architectural details
It uses algorithms and techniques from a very large
number of areas in computer science
Translates intricate theory into practice - enables tool
building

Y.N. Srikant Compiler Overview



About the Nature of Compiler Algorithms

Draws results from mathematical logic, lattice theory, linear
algebra, probability, etc.

type checking, static analysis, dependence analysis and
loop parallelization, cache analysis, etc.

Makes practical application of
Greedy algorithms - register allocation
Heuristic search - list scheduling
Graph algorithms - dead code elimination, register
allocation
Dynamic programming - instruction selection
Optimization techniques - instruction scheduling
Finite automata - lexical analysis
Pushdown automata - parsing
Fixed point algorithms - data-flow analysis
Complex data structures - symbol tables, parse trees, data
dependence graphs
Computer architecture - machine code generation

Y.N. Srikant Compiler Overview



Other Uses of Scanning and Parsing Techniques

Assembler implementation
Online text searching (GREP, AWK) and word processing
Website filtering
Command language interpreters
Scripting language interpretation (Unix shell, Perl, Python)
XML parsing and document tree construction
Database query interpreters

Y.N. Srikant Compiler Overview



Other Uses of Program Analysis Techniques

Converting a sequential loop to a parallel loop
Program analysis to determine if programs are data-race
free
Profiling programs to determine busy regions
Program slicing
Data-flow analysis approach to software testing

Uncovering errors along all paths
Dereferencing null pointers
Buffer overflows and memory leaks

Worst Case Execution Time (WCET) estimation and
energy analysis

Y.N. Srikant Compiler Overview



Language Processing System

Y.N. Srikant Compiler Overview



Compiler Overview

Y.N. Srikant Compiler Overview



Compilers and Interpreters

Compilers generate machine code, whereas interpreters
interpret intermediate code
Interpreters are easier to write and can provide better error
messages (symbol table is still available)
Interpreters are at least 5 times slower than machine code
generated by compilers
Interpreters also require much more memory than machine
code generated by compilers
Examples: Perl, Python, Unix Shell, Java, BASIC, LISP

Y.N. Srikant Compiler Overview



Translation Overview - Lexical Analysis

Y.N. Srikant Compiler Overview



Lexical Analysis

LA can be generated automatically from regular expression
specifications

LEX and Flex are two such tools

LA is a deterministic finite state automaton
Why is LA separate from parsing?

Simplification of design - software engineering reason
I/O issues are limited LA alone
LA based on finite automata are more efficient to implement
than pushdown automata used for parsing (due to stack)

Y.N. Srikant Compiler Overview



Translation Overview - Syntax Analysis

Y.N. Srikant Compiler Overview



Parsing or Syntax Analysis

Syntax analyzers (parsers) can be generated automatically
from several variants of context-free grammar
specifications

LL(1), and LALR(1) are the most popular ones
ANTLR (for LL(1)), YACC and Bison (for LALR(1)) are such
tools

Parsers are deterministic push-down automata
Parsers cannot handle context-sensitive features of
programming languages; e.g.,

Variables are declared before use
Types match on both sides of assignments
Parameter types and number match in declaration and use

Y.N. Srikant Compiler Overview



Translation Overview - Semantic Analysis

Y.N. Srikant Compiler Overview



Semantic Analysis

Semantic consistency that cannot be handled at the
parsing stage is handled here
Type checking of various programming language
constructs is one of the most important tasks
Stores type information in the symbol table or the syntax
tree

Types of variables, function parameters, array dimensions,
etc.
Used not only for semantic validation but also for
subsequent phases of compilation

Static semantics of programming languages can be
specified using attribute grammars

Y.N. Srikant Compiler Overview



Translation Overview - Intermediate Code Generation

Y.N. Srikant Compiler Overview



Intermediate Code Generation

While generating machine code directly from source code
is possible, it entails two problems

With m languages and n target machines, we need to write
m × n compilers
The code optimizer which is one of the largest and
very-difficult-to-write components of any compiler cannot be
reused

By converting source code to an intermediate code, a
machine-independent code optimizer may be written
Intermediate code must be easy to produce and easy to
translate to machine code

A sort of universal assembly language
Should not contain any machine-specific parameters
(registers, addresses, etc.)

Y.N. Srikant Compiler Overview



Different Types of Intermediate Code

The type of intermediate code deployed is based on the
application
Quadruples, triples, indirect triples, abstract syntax trees
are the classical forms used for machine-independent
optimizations and machine code generation
Static Single Assignment form (SSA) is a recent form and
enables more effective optimizations

Conditional constant propagation and global value
numbering are more effective on SSA

Program Dependence Graph (PDG) is useful in automatic
parallelization, instruction scheduling, and software
pipelining

Y.N. Srikant Compiler Overview



Translation Overview - Code Optimization

Y.N. Srikant Compiler Overview



Machine-independent Code Optimization

Intermediate code generation process introduces many
inefficiencies

Extra copies of variables, using variables instead of
constants, repeated evaluation of expressions, etc.

Code optimization removes such inefficiencies and
improves code
Improvement may be time, space, or power consumption
It changes the structure of programs, sometimes of beyond
recognition

Inlines functions, unrolls loops, eliminates some
programmer-defined variables, etc.

Code optimization consists of a bunch of heuristics and
percentage of improvement depends on programs (may be
zero also)

Y.N. Srikant Compiler Overview



Examples of Machine-Independant Optimizations

Common sub-expression elimination
Copy propagation
Loop invariant code motion
Partial redundancy elimination
Induction variable elimination and strength reduction
Code opimization needs information about the program

which expressions are being recomputed in a function?
which definitions reach a point?

All such information is gathered through data-flow analysis

Y.N. Srikant Compiler Overview



Translation Overview - Code Generation

Y.N. Srikant Compiler Overview



Code Generation

Converts intermediate code to machine code
Each intermediate code instruction may result in many
machine instructions or vice-cersa
Must handle all aspects of machine architecture

Registers, pipelining, cache, multiple function units, etc.
Generating efficient code is an NP-complete problem

Tree pattern matching-based strategies are among the best
Needs tree intermediate code

Storage allocation decisions are made here
Register allocation and assignment are the most important
problems

Y.N. Srikant Compiler Overview



Machine-Dependent Optimizations

Peephole optimizations
Analyze sequence of instructions in a small window
(peephole) and using preset patterns, replace them with a
more efficient sequence
Redundant instruction elimination
e.g., replace the sequence [LD A,R1][ST R1,A] by [LD
A,R1]
Eliminate “jump to jump” instructions
Use machine idioms (use INC instead of LD and ADD)

Instruction scheduling (reordering) to eliminate pipeline
interlocks and to increase parallelism
Trace scheduling to increase the size of basic blocks and
increase parallelism
Software pipelining to increase parallelism in loops

Y.N. Srikant Compiler Overview


