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Abstract—In this paper, we propose sparsity based coherent
and non-coherent dictionary for action recognition. First, the in-
put data is divided into different clusters and number of clusters
depends on number of action categories. Within each cluster,
we seek data items of each action category. If number of data
items exceeds threshold in any action category, these items are
labeled as coherent. In a similar way, all coherent data items from
different clusters form a coherent group of each action category
and data which are not part of the coherent group belong to non-
coherent group of each action category. These coherent and non-
coherent groups are learned using K-SVD (K- Singular Value
Decomposition) dictionary learning. Since the coherent group
has more similarity among data, only few atoms need to be
learned. In non-coherent group, there is a high variability among
the data items. So we propose an orthogonal projection based
selection to get optimal dictionary in order to retain maximum
variance in the data. Finally, the obtained dictionary atoms of
both groups in each action category are combined and then
updated using Limited Broyden-Fletcher-Goldfarb-Shanno (L-
BFGS) optimization algorithm. The experiments are conducted
on challenging datasets HMDBS1 and UCF50 with action bank
features and achieve comparable result using this state of art
feature.

Index Terms—coherency, sparse coding, dictionary learning.

I. INTRODUCTION

T is a challenging task to obtain compact and discriminative

[1]] representation for enormous amount of visual data for
classification or recognition. Sparsity based approach has been
extensively [2][3]] used in many areas like action recognition,
object tracking, video super resolution, face hallucination, face
recognition etc. At the origin of this model lies a simple linear
system of equations. A full row rank matrix, D € RM*K
with m < K, having infinite number of solutions in Dx =y.
This is also called underdetermined system of linear equations.
In our context, D = [did2...dk] is called as dictionary
where d; € R™ is referred as dictionary atom. In order to
obtain unique solution, regularization is a familiar way where
a function .J(x) determines the kind of solution we may obtain,

min J(x) subject to Dx =y.

The I norm is widely used best choice for J(x), because of
it’s mathematical simplicity to obtain the solution. But it is
realized that this is not a best solution because it is dense in
nature. The quest for sparse solution ended up in exploring
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{1 or lp norm solution. The [y norm, number of non-zero
coefficients, is more attractive because it provides the sparsest
solution. Despite proved it’s uniqueness and global optimal-
ity [4], finding the solution is still NP hard problem. The
orthogonal matching pursuit (OMP) algorithm is a practical
approach to obtain [y solution. This is called sparse coding.
The input signals can be learned into the dictionary D, which
is known as dictionary learning. There are many dictionary
learning algorithms such as MOD [35], K-SVD [6] etc. Unlike
in signal reconstruction, for machine learning application, we
look for discriminative dictionary atoms, not necessarily over-
complete.

The sparse based approach is very powerful and successfully
used in many machine learning applications. Wright et al.
[7] used sparse coding for face recognition and reconstruction
error for classification which yielded better result. Yang et al.
[8]] introduce Fisher discrimination criterion to get discrimina-
tive dictionary atoms. The extension of [8] presents a support
vector based discriminative dictionary learning model [9]. In
[10], Mairal et al. add discriminative term to the dictionary
learning which optimize the dictionary. The dictionary learning
is tuned to specific task like semi-supervised learning [11]]
by adding more discriminative terms. This exploits unlabelled
data by sparse representation and solves specific task like
classification.

In [12], the input data is divided into clusters and learned
into local dictionaries. The global dictionary is trained from
atoms of these local dictionaries. This helps to reduce com-
putational time and increase performance in image processing
applications. In our work, we treat coherent and non-coherent
data items seperately and learned them as separate dictionaries.
Daniele et al. [[13]] learned dictionary with low mutual coher-
ence by sparse representation followed by dictionary update
using iterative projections and rotations. The main character-
estics of dictionary learning is the mutual coherene among
dictionary atoms. In order to reduce this mutual coherence,
Mansour Nejati et al. [14] propose a coherence regularized
dictionary learning which explicitly imposes a coherence
regularizer to learn the dictionary. In [15], fixed coherence
dictionary is made by maximizing pairwise decorrelations of
atoms in the dictionary.

The outline of the approach is shown in figure [I| In this
work, we show how coherency among data can be exploited
using the sparse based approach. For non-coherent data, an
orthogonal projection based selection is used to obtain dis-
criminative dictionary atoms. Then the obtained dictionary
atoms are updated to enhance the recognition performance.
The section [[I] describes coherent and non-coherent dictionary
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Fig. 1: Block diagram of the proposed approach for
action recognition. Dotted arrow indicates that cluster
may or may not have coherent or non-coherent group.

learning for each action category. The updation of obtained
dictionary is explained in section [[I] and the experimental
study is discussed in section [[V] Finally, section [V] concludes
the entire work.

II. COHERENT AND NON-COHERENT DICTIONARY
LEARNING

Initially, we cluster input data ¥ = [y1,y2,...,¥yN] €
R™ N into n clusters using k-means and number of clusters,
ie. n, depends on number action categories in the dataset.
We seek natural coherency by grouping training data into n
clusters. These clusters are Y = {C1,Cs, ..., C,}, where C;
denotes it" cluster. In each cluster, we look for coherent and
non-coherent data items which are to be learned as separate
dictionaries. Each coherent and non-coherent group are learned
by K-SVD dictionary learning which alternates sparse coding
and dictionary update. For sparse coding, it uses OMP which
looks for minimum [y norm and 7' is the sparsity constraint
for this optimization problem:

argmin||Y — DX||% subjectto Vi |Ixillo <7, (1)
DX

each sparse vector x; € RX in sparse matrix X =
[x1X2 ...xN] represents corresponding y; in the input data
Y = [y1,¥2,--.,yN] € R™¥. The notation |.|r and
I-llo denotes frobenius norm and Iy norm, respecively. After
getting X, the dictionary D will be updated using singular
value decomposition (svd) unlike in MOD which uses pseudo
inverse for dictionary update. Sections [[I-A] and [[I-B] detail
how to group and learn coherent and non-coherent data items.

A. Learning coherent actions

In each cluster C}, the data are grouped based on their action
categories. For grouping, there is a constraint for minimum

number of data items to group. If it satisfies the constraint, then
these data items are labeled as coherent. Similarly, coherent
data of particular action category, say c, are grouped from all
clusters to form coherent group G¢ , . as:

cohe
GO = [GSGS...GS...GE], 1<c<pie{l,2,....n)

where p and n denote number of classes and clusters, re-
spectively. The coherent group, G¢, may not exist in all
clusters because of the minimum grouping constraint. Then
each G¢ . is learned into the dictionary D¢,  using K-
SVD dictionary learning. Coherent group contains similar data
items, so that we can exploit sparsity by learning into few
dictionary atoms. The advantage of this grouping is that only
few dictionary atoms are enough to approximate the input data
which leads to the reduction of overall dictionary size and
computational time. If there is more coherency in the input
data, we can obtain very compact dictionary while achieving
good recognition performance. All other data items which are
not part of the coherent group belong to non-coherent group
which is treated in a different manner as discussed in the next
section.

B. Learning non-coherent actions

The non-coherent group has high variability among data
items, because it is scattered in many clusters. So, we need
to learn more dictionary atoms compared to coherent group
discussed in the subsection [[IZAl The selection of minimum
number of discriminative dictionary atoms effectively is a
challenging task. Likewise in coherent group, non-coherent

items in each action category c are grouped into G¢,_ ;. and
learned into the dictionary D¢, . = [didz...dy], where

d; € R™ represents dictionary atom. The most variant
dictionary atoms are to be selected from this dictionary. For
this purpose, we propose orthogonal projection based selection
to include maximum variability among the dictionary atoms.
Here, one data item is to be picked randomly from Dy ;.
and make it as residual vector r. Now the current Dy . has
only (k — 1) dictionary atoms. Initially, the closest dictionary
atom from Dy, = to the residual r to be found by projecting
r onto the dictionary atoms. For this purpose, error e(4) is

computed as,

e(i) = ming, ||diz; — rH% Vd; € D5 ones 2)

and the optimal choice z; = 95,

R where d; - r denotes dot
product between d; and r. Now the closest vector d;, to r
can be found by looking e(i1) < e(i) for all d; in DS, ..
Then this dj, is removed from Dy .. and added to empty
set A. After getting d;, , the residual r needs to be updated as
r = r —dj, z;; and normalized to unit norm. The updated r is
orthogonal to dj, . In the next iteration, we can find d; which
is closest to updated residual r using the same procedure. In
each iteration, one vector from D¢ _ . is chosen and added
to set A . At the t*" iteration, A contains ¢ selected vectors
viz. {di,, di,, ..., d;, } and then the updated residual becomes
orthogonal to all dictionary atoms in A. So, the residual can

be updated as,
r=r— AATA)1 ATy, 3)
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where, with some abuse of notation, we use A to refer set of
dictionary atoms as well as matrix of dictionary atoms. The
set A usually contains few atoms, so it does not take much
computational time to calculate inverse of the matrix while
updating residual.

The non-coherent dictionary after selecting most variant

dictionary atoms denoted as Df:cohe which is cascaded to

.he to obtain final dictionary of action category c, ie.,
D¢ = [D¢,},. D¢ .one)- Then the dictionary D¢ to be updated.

III. UPDATE THE DICTIONARY OF EACH ACTION

In each action category ¢, two dictionaries are obtained
viz. D¢, and D¢, , . These two dictionaries are cascaded
to form dictionary of each action category c, ie., D¢. Here,
we update the dictionary D¢ using input data of the action
category c. An unconstrained non-linear optimization algo-
rithm L-BFGS (Limited memory BFGS) [16] has been used
to update the dictionary. This approximates Broyden-Fletcher-
Goldfarb-Shanno (BFGS) algorithm using a limited amount
of memory. It is based on gradient projection method. The
matrix Y¢ € R™*N° be the input data of action category c
and N°¢ denotes number of input data belong to the same action
category. The sparse matrix X¢ € R**N° can be obtained us-
ing OMP algorithm. The input data Y ¢ is approximated using
dictionary D¢ and sparse matrix X°¢. Now the approximation
becomes, Y° ~ DcX¢.

The cost function and gradient matrix are to be computed
for the update. So the cost function J can be written as,

1 cyc c||2 A 2
? J

J = )

where d;; is the element in i*" row and j* column in the

matrix D¢ and the regularization parameter A is determined
by empirically. The vectorized form of gradient matrix is given
by,

th

oJ 1

oDc¢  N¢
All updated dictionaries of each action categories are cascaded
to form final dictionary D = [D'D? ... D"]. The dictionary

D is used for the experiment which is discussed in the next
section.

A De.

DEXE _ye© XcT
( X

®)

1) Reconstruction error: In this experiment, reconstruction
error is used to evaluate the efficacy of the learned dictionaries
and OMP algorithm to obtain sparse vector of the test vector
y. We use two ways to get reconstruction error. One way is
to calculate reconstruction error for each dictionary D¢ sepa-
rately. In this, sparse vector x€ is obtained using corresponding
D¢ and y. For the second way, dictionaries from each action
category, D¢, are cascaded to form dictionary D and obtain
sparse vector x using D and y. Finally, equal weightages are
given to both result by late fusion. The action category of
minimum reconstruction error will be assigned to test input
v, ie.,mcinHYi — D°xC||2, where the sparse vector x° contains

coefficients corresponding to the atoms in the dictionary D°.

IV. EXPERIMENT

We demonstrate our proposed approach on two challenging
datasets viz. UCF50 [17] and HMDBS51 [18]. The state of
art feature Action bank [19] has been used to represent each
action videos. Action bank comprises many individual action
detectors which constitutes mid-level representation of action
data. The non-coherent groups are learned into dictionary of
larger size as compared to coherent groups to maintain high
variability in non-coherent group. However, in this experiment,
coherent and non-coherent group are learned into dictionary
size of 10% and 20% of input data, respectively. The sparsity
constraint 7" is 10 and value of A for dictionary update is 1.
Moreover, the grouping constraint, ie., minimum number of
coherent data items, is taken as 10 in this experiment.

A. UCF 50 dataset

This is one of the challenging data set for action recognition.
There are 50 action categories and 6950 action videos in all
categories. There are 25 persons performing actions in each
category. Here the input data is grouped into 50 clusters and
each cluster is analysed for coherent and non-coherent data
items. The obtained coherent and non-coherent dictionary are
cascaded and updated as discussed in previous sections. The
experimental results are taken based on Leave-One-Person-
Out strategy. In figure [Ja), coherent dictionary atoms are
dominating non-coherent in Golf swing and Billiards. In this
case, it provides good recognition accuracy with small number
of dictionary atoms which shows if coherency is more in
any action category, we can have better recognition while
reducing overall dictionary size. Figure[2{b) shows recognition
accuracies of coherent and non-coherent dictionary separately
and both. It can be observed that both coherent and non-
coherent are contributing for the overall recognition accuracy.
Our proposed approach is compared with direct dictionary
learning in the figure 2{c) which clearly indicates splitting the
data into coherent and non-coherent is worth for enhancing
the recognition performance. The same number of atoms are
used for both proposed and direct dictionary learning. Figure
[] gives the performance of action recognition before and after
the dictionary update. It can be observed that the dictionary
update clearly enhances the overall recognition performance.

B. HMDB 51 dataset

This is another challenging dataset. It has 51 action cate-
gories and 6766 action videos. The input data are clustered
into 51 clusters and results are obtained based on 10-fold
cross validation. In this, most of the data items are grouped
in non-coherent group as shown in figure [3(a), this indicates
the high variability in the dataset. As compared to coherent
atoms, the non-coherent atoms are contributing more to the
overall recognition performance as seen in figure [3[b). So the
selection of non-coherent dictionary atoms is vital to this kind
of challenging dataset. Figure [3(c) compares our proposed
method with direct dictionary learning, which shows advantage
of the proposed method.
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C. Comparison to the state of the art

Table [I| compares our method with other state of art results
in datasets UCF50 and HMDBS51. Sadanand et al. [19] and
shyju et al. [20] used same action bank features as ours and
achieved performance of 57.9% and 59.3%, respectively. We
improved this benchmark results using actionbank around 7%.
Solmaz et al. [21]] and Kliper el al. [22] achieved better results
than ours, but they used different features like GIST3D, MIP
etc.

For HMDB51, our proposed method achieved better results

than all other state of art results. Sadanand et al. [19] got
26.9%, but we achieved remarkably good result 35.8% using
action bank feature. Solmaz et al. [21] and Kliper el al.
[22]] achieved 29.2% and 29.17%, respectively. We improve
it further by around 6%.

TABLE I: Comparison of our results to the state of art

Method Features UCF50 (%) | HMDBSI (%)
Sadanand et al.[19] Action bank 57.90 26.90
Shyju et al. [20] Action bank 59.30 23.62
Solmaz et al. [21] GIST3D 73.70 29.20
Kliper-Gross et al. [22] MIP 72.68 29.17
Proposed Method Action bank 66.30 35.8

V. CONCLUSION

Here our aim is to deal coherent data and non-coherent data
separately. The experiments prove the efficacy of the proposed
approach by giving good recognition performances. To exploit
sparsity, coherent group can be learned into few dictionary
atoms. If the input data has more coherent data, it can
drastically reduce the overall dictionary size and computational
time. In this way, the dictionary can be optimized effectively
while keeping discriminant information for generalization. For
non-coherent group, there is high variability among the data,
we use orthogonal projection based selection to get optimum
discriminative dictionary atoms which is an efficient way to
sustain high variability in the non-coherent data. This is a
challenging task and we look more robust method in future
work.
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