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a b s t r a c t 

The object detection in aerial images is one of the most commonly used tasks in the wide-range of com- 

puter vision applications. However, the object detection is more challenging due to the following issues: 

(a) the pixel occupancy vary among the different scales of objects, (b) the distribution of objects is not 

uniform in aerial images, (c) the appearance of an object varies with different view-points and illumina- 

tion conditions, and (d) the number of objects, even though they belong to same type, vary across the 

images. To address these issues, we propose a novel network for multi-scale object detection in aerial 

images using hierarchical dilated convolutions, called as mSODANet. In particular, we probe hierarchical 

dilated network using parallel dilated convolutions to learn the contextual information of different types 

of objects at multiple scales and multiple field-of-views. The introduced hierarchical dilated network cap- 

tures the visual information of aerial image more effectively and enhances the detection capability of the 

model. Further, the extensive experiments conducted on three challenging publicly available datasets, i.e., 

Visdrone2019, DOTA (OBB & HBB), NWPU VHR-10, demonstrate the effectiveness of the proposed mSO- 

DANet and achieve the state-of-the-art performance on all three datasets. 

© 2022 Elsevier Ltd. All rights reserved. 
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. Introduction 

The content in aerial images encompasses various characteris- 

ics of objects on the ground due to non-uniformity in the acquisi- 

ion. These characteristics are manifested differently and specific to 

he acquisition platforms like drones and airplanes. Especially with 

erial images, many real-world vision based applications require 

he knowledge of their characteristics, e.g., depiction of objects at 

ifferent scales, 0 to 360 degree top-view, non-uniformity in their 

patial arrangements, and different contextual background infor- 

ation, etc., for better analysis. Particularly, object detection is the 

rocess of individual object localization and its classification that 

equires a thorough understanding of the characteristics of aerial 

mages. Moreover, the objects irrespective of their types, have dif- 

erent backgrounds and vary seasonally as well with view-angle 

f the sensor. Thus, the background information of objects indi- 

ates the contextual information, which provides useful semantics 

o the detection process. Hence, the identification of an object type 
� Source code is available at https://github.com/cv15nu/mSODANet 
∗ Corresponding author. 

E-mail address: cs16m18p0 0 0 0 01@iith.ac.in (V. Chalavadi). 
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t various scales along with the presence of other objects and the 

ackground information is quite difficult and challenging. For ex- 

mple, bridge object in aerial image can have different background 

nformation, i.e., either sand or water or both. In addition to dif- 

erent backgrounds of the same object, the pixel occupancy of the 

ackground is more than the foreground resulting in high intra- 

lass variation. Also, the pixel occupancy of larger objects (e.g., 

round-track field ) is more than smaller objects (e.g., ship, airplane ) 

n aerial images. Some objects such as basketball court and tennis 

ourt look visually similar and their uniform background informa- 

ion causes low inter-class variation. Fig. 1 depicts different objects 

nd their characteristics in aerial images, besides their intra-class 

nd inter-class variations. Hence, the object detection model must 

omprehend these characteristics, which jointly constitute the in- 

erent properties of different objects in aerial images. 

Existing convolutional neural network (CNN) based approaches 

1,2] have proven their effectiveness in improving the performance 

f object detection task, especially in natural images (e.g., Pas- 

al VOC [3] and MS COCO dataset [4] ). These approaches are fur- 

her improved by employing two CNN models separately to learn 

otation-invariant features, besides imposing Fisher discrimination 

riterion in the objective functions of CNN model to extract effec- 

https://doi.org/10.1016/j.patcog.2022.108548
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2022.108548&domain=pdf
https://github.com/cv15nu/mSODANet
mailto:cs16m18p000001@iith.ac.in
https://doi.org/10.1016/j.patcog.2022.108548
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Fig. 1. Characteristics of different objects from three varieties of aerial imagery object detection datasets. Row 1 & Row 2 depict the similar objects at multiple scales 

causing large disparity in their pixel occupancy in the images. Row 3 shows the densely packed and arbitrary sized objects. Row 4 includes the objects with arbitrary spatial 

arrangements. 
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ive CNN features [5] . However, these approaches are not adequate 

n understanding the special characteristics of aerial images in or- 

er to achieve better performance in object detection task. Unlike 

atural images, aerial images have different characteristics such as 

i) view-point variations while acquisition, (ii) similar objects with 

ultiple scales, (iii) the large deviation in pixel occupancy from 

mall, medium to large objects, (iv) complex background informa- 

ion of the objects, and (v) non-uniform distribution of objects 

long with arbitrary spatial arrangements. To analyze such charac- 

eristics, many works [6,7] have been proposed on multi-scale ob- 

ect detection in aerial images. For instance, Zhang et al. [6] intro- 

uced a context aware detection network (CAD-Net) which primar- 

ly uses ResNet [8] & feature pyramid network (FPN) [9] as back- 

one feature networks and constructs global & local contexts of 

bjects. However, CAD-Net is unable to learn contextual informa- 

ion of objects effectively, at multiple scales and multiple filed-of- 

iews. Recently, Li et al. [7] proposed ground sample distance iden- 

ifying network (GSDet) based on dilated convolutions to utilize 

round sample distance information and further enhance detection 

apability. Even though the GSDet network leverages dilated con- 

olutions to process objects at multiple scales & incorporates larger 

eceptive field, it lacks the feature refine module which effectively 

istills the multi-scale features. 

To address the aforementioned challenges, in this work, we 

ropose a novel multi-scale object detection network, mSODANet, 

sing hierarchical dilated convolutions to learn contextual fea- 

ures and model effective object detection framework. In partic- 

lar, we first extract multi-scale features from EfficientNet back- 

one network and then construct the hierarchical dilated network 

HDN) in order to extract contextual features at multiple-scales 

nd multiple-field of views. In addition, we explore bi-directional 
2 
eature aggregation module (BFAM) to further refine the obtained 

ulti-scale features and achieve dense multi-scale contextual fea- 

ures. Thus, we enhance the detection capability of the proposed 

odel and achieve significant improvement over recent state-of- 

he-art models [6,7,10] . The main contributions of this paper are 

ummarized as 

• We present a novel framework, mSODANet for effective multi- 

scale object detection in aerial images. 
• To cope with arbitrary size objects in aerial images, we learn 

multi-scale contextual information using hierarchical dilated 

convolutions. 
• Extensive experiments are conducted on three challenging 

datasets, i.e., VisDrone2019, DOTA (OBB & HBB), and NWPU 

VHR-10 to validate the efficacy of mSODANet. 

. Related work 

This section provides a brief review of the existing methods on 

bject detection in aerial images. Most of the CNN based object 

etection methods have been evolved using region based convolu- 

ional neural networks [2] , which are designed for natural images. 

n [11,12] , different types of objects are detected by accommodat- 

ng the multiple scales along with 0–360 degrees rotation of the 

bjects from top-view. These multiple rotations of geo-spatial ob- 

ects in aerial images are accommodated by incorporating a layer 

n the existing CNN architectures [11] . A feature pyramid network 

FPN) [9] is developed as a top-down architecture by employing 

ateral connections to build feature maps of high-level semantics 

t different scales. The contextual background information of ob- 

ects in aerial images vary at multiple scales. A multi-scale detec- 
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ion framework [13] is used to generate quality proposals in order 

o detect multi-scale objects effectively. 

Some methods [8,14] focus on capturing the arbitrary sizes of 

ifferent objects in aerial images. SNIPER [14] exhibits promising 

esults among these methods. Also, frameworks with patch-based 

raining have been considered for efficient object detection [15] . A 

ne-stage network (AVDNet) [16] is designed to detect the small- 

ized objects. In AVDNet, residual blocks at multiple scales are in- 

roduced to preserve the vanishing features for smaller objects. The 

esidual blocks along with output feature map achieves an effective 

epresentation of the salient features of the small objects. Also, a 

isualization mechanism for recurrent-features (RFAV) is used to 

nalyze the network behavior. 

The localization scheme is very crucial along with classification 

ccuracy in order to detect the densely packed objects with differ- 

nt orientations. To detect the objects effectively in densely packed 

rrangements, an RoI transformer [17] is used to transform the 

egion of interest from horizontal to rotational. This transformer 

ackles the misalignment problem between the localization accu- 

acy and classification confidence. Similarly, an end-to-end frame- 

ork [18] is designed by unifying the objects as clusters for their 

etection in aerial images. This framework comprises of three sub- 

etworks: cluster proposal, scale estimation, and detection tasks. 

he cluster proposals for a given input image are generated and 

hese proposals are used to estimate the object scales. Then, the 

ormalized clusters are fed into the detection network. This frame- 

ork effectively minimizes the number of patches in the detection 

rocess and also helps to boost detection performance. A SCRNet 

19] is designed to detect the small-sized and rotated objects in the 

luttered scenes. Here, multi-layer features are fused effectively us- 

ng anchors to increase the sensitivity to small-sized objects. Both 

he channel attention and supervised pixel attention networks help 

o mitigate the presence of noise and retain the relevant features 

f small and cluttered objects. 

In [20] , “random access memories” approach is proposed for 

arget detection, instead of localization and classification schemes 

t inference stage. This approach is formulated from a Bayesian 

erspective, in which the detection model is updated adaptively to 

aximize its posterior using both training and observation sam- 

les. To improve the performance of existing state-of-the-art ob- 

ect detection methods, an approach [5] imposes both rotation- 

nvariant and a Fisher discrimination regularizers on CNN features. 

 density-map guided network [21] is designed to obtain the dis- 

ribution of objects in feature map with respect to the change in 

ixel intensity. The intensity variations sense the existence of ob- 

ects and thereby provide statistical guidance to crop the images. 

his network has three modules, i.e., density map generation, im- 

ge cropping, and detector. The generated density maps are help- 

ul to learn the scale information in order to crop the regions in 

mages. The class imbalance in the detection process is addressed 

sing network [22] with dual sampler (DSHNet) to resolve the is- 

ues with long-tail distribution in aerial images. Recently, ground 

ample distance (GSD) of aerial images is incorporated in model- 

ng the object detection process [7] . This is a two-stage detection 

ramework, which has a subnet to convert the GSD regression into 

 probability estimates. Subsequently, the GSD information is com- 

ined with the sizes of regions of interest to determine the ac- 

ual size of objects. However, the efficacy of this two-stage detec- 

ion framework [7] has been investigated and its performance is 

eported only on DOTA (Oriented Bounding Box) dataset. 

Recently, context-aware approaches is used to achieve multi- 

cale object detection of small objects. Spatio-temporal convnet 

STDnet-ST) [23] exploits the correlation of promising regions be- 

ween frames for those objects under 16 × 16 pixels using an ef- 

cient tubelet linking is performed to link small objects across 

ideo frames. Multi- scale Structural Kernel Representation (MSKR) 
3 
24] employs polynomial kernel approximation, which does not 

nly draw into high-order statistics but also preserve the spatial 

nformation of input. Multi-scale deep feature learning network 

MDFN) [25] efficiently detects the objects by introducing informa- 

ion square and cubic inception modules into the high-level layers, 

hich employs parameter-sharing to enhance the computational 

fficiency. It considers not only individual objects and local con- 

exts but also their relationships. Spatial Context-aware Network 

SCA-Net) [26] adopts a Short-Path Context Module (SPCM) to pro- 

ressively enforce the interaction between local contextual cues 

nd global features. 

Further, the attention modules are used to enhance the multi- 

cale object detection performance in a deeply supervised U- 

ike encoder-decoder network [27] , which consists of feature ex- 

raction, channel-wise attention, boundary information localization 

nd saliency fusion modules. In order to obtain multi-scale con- 

extual information, Content-Aware Guidance Network (CAGNet) 

28] utilizes a Multi-scale Feature Extraction Module (MFEM) at 

ach level of abstraction. Finally, a hybrid loss function is de- 

igned w.r.t scale-balanced loss [29] which outperforms the widely 

sed Cross-entropy loss. Specifically for remote sensing images, 

ontrast-weighted Dictionary Learning (CDL) [30] is proposed to 

earn salient and non-salient atoms from positive and nega- 

ive samples to construct a discriminant dictionary, in which a 

ontrast-weighted term is proposed to encourage the contrast- 

eighted patterns to be present in the learned salient dictionary 

hile discouraging them from being present in the non-salient dic- 

ionary. 

Different from the existing approaches, we attempt to exploit 

ffective multi-scale contextual information for multi-scale object 

etection by jointly combining the three different networks, i.e., 

ackbone network, hierarchical dilated network, bi-directional fea- 

ure pyramid network. Moreover, the existing methods followed 

arious approaches that consider the characteristics of the objects 

f either VisDrone2019 or DOTA or NWPU VHR-10 datasets or any 

wo of them. In this paper, we focus on a joint network for object 

etection to investigate all three varieties of aerial imagery object 

etection datasets. 

. Proposed method 

In this section, we present mSODANet, a novel network for 

ulti-scale object detection in aerial images. The complete frame- 

ork of the proposed model is illustrated in Fig. 2 . The proposed 

SODANet has three major components, backbone network, hier- 

rchical dilated network (HDN), and bi-directional feature aggrega- 

ion module (BFAM). The backbone network ( Section 3.1 ) presents 

he feature extraction process. The HDN ( Section 3.2 ) learns the 

ulti-scale contextual information. And, the BFAM ( Section 3.3 ) 

efines the attained multi-scale contextual features for effective 

ulti-scale object detection. 

.1. Backbone network 

Aiming at robustness and efficiency, we use recent state-of- 

he-art image classification model, EfficientNet [31] , as a backbone 

etwork for our multi-scale object detection framework where it 

cales up the dimensions of network depth, width, and input res- 

lution. Mainly, we leverage the Imagenet pretrained checkpoints 

rom different scaling coefficients of EfficientNet-B0 to B6 as a 

ackbone feature extractor in order to fully utilize the visual in- 

ormation of varied size input images. In addition, we incorporate 

ompound scaling to jointly scale up the whole object detection 

ramework as in Tan et al. [32] to achieve better performance. On 

xtracting image features from EffecientNet, we forward them to 
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Fig. 2. Block diagram of the proposed hierarchical dilated network for object detection in aerial images. 
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ierarchical dilated network (HDN) to learn the multi-scale con- 

extual features of arbitrary size objects. 

.2. Hierarchical dilated network (HDN) 

Usually, aerial images cover large visual scene that encloses rich 

ontextual information of multiple objects. The contextual infor- 

ation of visual objects characterizes the correlation between se- 

antic nature of visual object and visual scene. In addition, the 

cale of objects in visual scene varies drastically over the all aerial 

mages. Hence, it is essential to develop a model that can handle 

aried size objects and capture the contextual information of all 

he objects present in a visual scene. Motivated by the above ob- 

ervations, we learn the contextual information of various objects 

t multiple-scales and multiple field-of-views by introducing hier- 

rchical dilated network on top of multi-scale features extracted 

rom backbone network. The proposed hierarchical dilated network 

omponent is shown in Fig. 2 (left), where we incorporate multiple 

arallel atrous/dilated convolutions in each level of HDN. 

On extracting multi-scale features from backbone network [ � E in 

 E in 
l 1 

, E in 
l 2 

, . . . ], where E in 
l i 

denotes the feature at level l i , we define

 transformation function h such that the all extracted features are 

ggregated effectively to produce the output features � E out = h ( � E in ) . 

ommonly, by taking input features at levels from 3 to 7, i.e., � E in 

 E in 
3 

, . . . , E in 
7 

, where E represents the feature map of size 1 / 2 i , the

ecent object detectors like FPN [9] or EfficientDet [32] aggregate 

ulti-scale features and produce output features as 

 

out 
7 = Con v (E in 7 ) 

 

out 
6 = Con v (E in 6 + G (E out 

7 )) 

 . . 

 

out 
3 = Con v (E in 3 + G (E out 

4 )) , (1) 

here G indicates the upsampling or downsampling operation and 

on v represents the typical convolutional operation. Even though, 

he above feature fusion mechanism incorporates the multi-scale 

nformation, it fails to learn multi-scale contextual information of 

ll objects in an visual scene. Also, standard convolutions, due to 

heir small receptive field, may not capture variations in the object 

cales and perspective effectively. 
4 
To address aforementioned issues, in our work, we introduce 

he hierarchical dilated network (HDN) to effectively capture con- 

extual information at multiple scales and multiple filed-of-views. 

ur hierarchical dilated network introduces two dilated networks 

 DN 1 and DN 2 ) in between multi-scale features which are extracted 

rom backbone network. As shown in Fig. 2 , we first extract multi- 

cale features ( E 3 , E 4 , E 5 , E 6 , E 7 ) using pretrained EfficientNet net-

ork and then employ two dilated networks DN 1 and DN 2 in be- 

ween E 5 & E 6 and E 6 & E 7 in order to construct hierarchic dilated

etwork. Both DN 1 and DN 2 of HDN incorporate parallel dilated 

onvolutions with different dilation rates to capture larger recep- 

ive field information and further incorporate multi-scale contex- 

ual information. Dilated convolutions are extremely powerful con- 

olutional operations which explicitly control the receptive field of 

eature maps and process the input at the multiple field-of-views 

33] . 

Given a two dimensional signal, for each location p on the out- 

ut convolutional feature map g and filter w , the dilated convolu- 

ion is applied on input f as 

[ p] = 

∑ 

j 

f [ p + r · j ] w [ j ] , (2)

here r is the dilation rate which determines the stride that we 

ample from the input signal. Note that the r = 1 is the standard 

onvolution, a special case of dilated convolutions. 

In both DN 1 and DN 2 of our hierarchical dilated network, we 

mploy several parallel dilated convolutions with different dilation 

ates and filter sizes. The construction of DN 1 and DN 2 is shown 

n Fig. 2 (left). Here, both DN 1 & DN 2 follow the same architec- 

ural design, where we incorporate several f × f filters with dila- 

ion rates of r 1 , r 2 , r 3 , r 4 . On incorporating DN 1 in between E 6 & E 7 
nd DN 2 in E 5 & E 6 , the Eq. (1) is updated to 

 

out 
7 = Con v (E out 

6 ) 

 

out 
6 = DN 2 (E out 

5 + R (E out 
7 )) 

 

out 
5 = DN 1 (E in 5 + R (E out 

6 )) 

 . . 

 

out 
3 = Con v (E in 3 + R (E out 

4 )) , (3) 

here DN & DN are the dilated network components of HDN. 
1 2 
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Fig. 3. Feature network comparison. 
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.3. Bi-directional feature aggregation module (BFAM) 

The detection framework with feature pyramid network (FPN) 

9] has been extensively investigated for multi-scale object de- 

ection task [6,34] . However, the FPN [9] architecture is inher- 

ntly restricted to top-down information only. To avoid such issue, 

iu et al. introduced a path aggregation network (PANet) [35] by 

dding an extra bottom-up pathway to the existing top-down 

athway as shown in Fig. 3 (b). Further, NAS-FPN [36] explored 

eural architecture search (NAS) in order to search for efficient 

ross-scale feature network topology. Recently, a bi-directional fea- 

ure pyramid network (Bi-FPN) is introduced in Tan et al. [32] with 

everal optimizations on cross-scale connections in order to im- 

rove the model efficacy and further achieve state-of-the-art per- 

ormance. Inspired by this, we refine the extracted multi-scale con- 

extual features using BFAM as shown in Fig. 3 (c), where we first 

xtract the multi-scale contextual features at various levels from 

 to 7 { E 3 , E 4 , E 5 , E 6 , E 7 } as formulated in Eq. (3) and recurrently

pply the feature aggregation mechanism. 

In brief, the bi-directional feature aggregation module (BFAM) 

perates at three stages. At first, the BFAM discards the nodes with 

hich it has only one input edge on the basis that the single 

dge nodes does not contribute much information into the net- 

ork. Second, it adds an extra edge from the original input fea- 

ure map to each output feature map at the same level to com- 

ine more information without adding any learnable layers. Third, 

t integrates top-down and bottom-up path ways as one feature 

ayer of BFAM, and further employs such layers recurrently to learn 

ense multi-scale contextual information. In our work, we process 

he multi-scale contextual information extracted from hierarchical 

ilated network by the BFAM layers at multiple times to estab- 

ish effective multi-scale contextual information within the net- 

ork and further enhance the object detection capability. More- 

ver, we follow the same box prediction process as in BFAM in 

rder to generate the predictions of class and bounding box re- 

ressor, since the BFAM is employed on top of hierarchical dilated 

etwork module. 

. Experimental results 

This section presents both quantitative and qualitative analysis 

f the proposed method to demonstrate its effectiveness on three 

arieties of benchmark object detection datasets in aerial images, 

amely, VisDrone2019 [37] , DOTA (OBB & HBB) [38] , and NWPU 

HR10 [39] . 
5 
.1. Datasets 

VisDrone2019 It is the largest drone dataset which consists of 

599 images with 10-class objects comprising 6471 images for 

raining, 548 for validation, and 1580 for testing. The objects from 

0 classes are Awning, Bicycle, Bus, Car, Motor, Pedestrian, People, 

ruck, Tricycle , and Van . 

DOTA It is the largest aerial image object detection dataset 

hich is available in two variants based on Horizontal and Ori- 

nted bounding-box annotations, i.e., DOTA (HBB) & DOTA (OBB). 

his DOTA dataset has 2806 total images with 188, 282 instances 

epicting 15 categories of objects. These categories include Base- 

all diamond (BD), Basketball court (BC), Bridge (BR), Ground track 

eld (GTF), Harbor (HA), Helicopter (HC), Large vehicle (LV), Plane 

PL), Roundabout (RA), Ship (SH), Small vehicle (SV), Storage tank (ST), 

occer-ball field (SBF), Swimming pool (SP) , and Tennis court (TC) . 

he instances have large variations in scale, orientation, and aspect 

atio. Both DOTA (HBB) & DOTA (OBB) datasets are split into 1411 

mages for training, 458 image for validation, 937 images for test- 

ng. NWPU VHR-10 It consists of 650 remote sensing images com- 

rising 10 categories of objects. These categories include Airplane, 

torage tank, Ship, Baseball diamond, Basketball court, Tennis court, 

arbor, Ground track field, Bridge , and Vehicle . The split ratio of this 

ataset for train, validation, and test is 80%,10%, and 10% ratios, re- 

pectively. 

Each of the datasets consists of multiple objects acquired from 

latforms with different sensing parameters such as view-point, 

eight of the acquisition platform, etc., which influence the de- 

iction of various objects of same type. Thus the objects in Vis- 

rone2019 have a wide range of scale variations, illumination con- 

itions, scenarios, and view-points. Similarly, the objects in DOTA 

re densely packed and also exhibit high inter-class and low intra- 

lass variations. The objects in NWPU VHR-10 dataset are at differ- 

nt scales with complex background information. The pixel occu- 

ancy of the objects in these images are influenced by the scale 

f the object(s) and the number of objects in an image. Hence, 

hese datasets together pose various challenges in designing a sin- 

le stage object detection framework to incorporate their charac- 

eristics jointly in the detection process. 

.2. Implementation details 

Data augmentation To effectively utilize the characteristics of 

erial images to detect objects, multiple data augmentation op- 

rations are explored to improve the training in the proposed 
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Fig. 4. Dimensions of input image samples from three object detection datasets. 
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ethod. Specifically, vertical flipping, horizontal flipping, rotation 

rom −90 ◦ to 90 ◦, scaling from 0.5 to 1.5, and shear range −16 to

6. The adoption of data augmentation in our pipeline contributes 

o the robustness of the proposed model under varying geometric 

eatures. 

Proposed multi-scale object detection model For our mSODANet 

odel, we adopt the open source implementation of EfficientNet 

31] . And, we reuse the pre-trained checkpoints of EfficientNet 

 B 3 and B 5 ) as backbone feature extractor. Usually, the Efficient- 

et provides multiple checkpoints from B 0 to B 7 for effective rep- 

esentation of various image resolutions. In this work, we choose 

he suitable checkpoints by generating a 2D histogram consisting 

f width and height for all the three benchmark object detec- 

ion datasets. The dimension (width & height) in majority of the 

mages of VisDrone2019, DOTA, and NWPU VHR-10 are between 

10 0–140 0, 120 0–130 0, 750–90 0, respectively, as depicted in Fig. 4 .

ased upon this, we fix the EfficientNet backbone checkpoint as B 5 
1280) for VisDrone2019, DOTA OBB, & DOTA HBB, and B 3 (896) 

or NWPU VHR-10 dataset. In the hierarchical dilation network, 

e introduce dual dilation modules DN 1 & DN 2 consisting of di- 

ation rates [1,2,4,6] & [1,6,8,10], respectively. The dilated modules 

se 1 × 1 and 3 × 3 dilated convolutions and 64 channels for paral- 

el dilated convolutions. In addition, the object detection model is 

rained with a learning rate of 0.0 0 03 and weight decay of 4 exp 

−5 

sing an SGD optimizer. Synchronized batch norm is utilized to 

alculate focal loss after every convolutional layer. 

.3. Quantitative analysis 

This section presents the performance comparison of our pro- 

osed method with state-of-the art approaches on three pub- 

icly available aerial image object detection datasets, namely, Vis- 

rone2019, DOTA (OBB & HBB), and NWPU VHR-10. We consider 

ean average precision ( mAP ) metric, specifically for the threshold 

f 0.5 & 0.75, to indicate a predicted bounding box if its Intersec- 

ion over Union (IoU) is greater than 0.5 or 0.75. Also, we provide 

he average precision ( AP ) over small, medium, and large bound- 

ng box scales. We report the object detection performance of the 

roposed method on three aerial image datasets in the following 

ub-sections. 

.3.1. VisDrone2019 

Table 1 gives threshold-wise object detection performance and 

able 2 presents class-wise object detection performance of the 

roposed method. Our proposed method achieves a margin of 7 . 6% 

mprovement in the overall threshold-wise average precision over 

he existing state-of-the art approaches. The threshold-wise met- 

ics AP , AR , AR , and AR indicate the superiority of our
75 10 100 500 

6 
ethod. Also, the class-wise average precision of our method out- 

erforms state-of-the-art methods. These results signify the ro- 

ustness of our mSODANet and its ability to encode the character- 

stics of even more harder samples in the detection process. This 

nsures that our mSODANet with hierarchical dilated convolutions 

ffectively captures multi-scale objects with complex background 

nformation in variety of scenarios in aerial images. 

.3.2. DOTA 

DOTA dataset provides two kinds of bounding boxes, i.e., DOTA 

riented bounding boxes (OBB) and DOTA horizontal bounding 

oxes (HBB) for object detection task. In this work, we evaluate 

he performance of our mSODANet on both DOTA (OBB) and DOTA 

HBB) datasets in order to demonstrate the robustness of the object 

etection capability. Tables 3 and 4 present the performance com- 

arison of mSODANet with state-of-the-art methods in terms of 

verage precision (AP) and threshold-wise average precisions ( AP 50 

 AP 75 ) on DOTA (OBB) & DOTA (HBB) datasets, respectively. It is 

vident from the Tables that our mSODANet shows an improve- 

ent of 2% on DOTA (OBB) and 5% on DOTA (HBB) over the ex- 

sting state-of-the-art methods in terms of average precision (AP). 

hus we report the performance of our mSODANet as new state- 

f-the-art. In addition, the class-wise performance of the proposed 

SODANet has been evaluated over state-of-the-art methods on 

oth DOTA (OBB) and DOTA (HBB) in terms of mean average pre- 

ision ( mAP ) as given in Tables 5 and 6 , respectively. It can be ob-

erved from Table 5 that the proposed mSODANet outperforms on 

ost of the classes in DOTA (OBB) dataset. For DOTA (HBB), we 

ignificantly outperform all the classes in terms of mean average 

recision ( mAP ) as shown in Table 6 . 

.3.3. NWPU VHR-10 

Table 7 gives the overall class-wise average precision of our 

roposed method and state-of-the art object detection approaches 

n NWPU VHR-10 dataset. The efficacy of mSODANet is compared 

ith five different object detection frameworks. A margin of 4 . 5% 

mprovement in the average precision of mSODANet is observed 

n comparison with state-of-the-art methods as shown in Table 7 . 

oreover, the detection performance of our mSODANet exceeds 

7% on all objects except ship. Thus our method exhibits a con- 

istent detection performance over all the individual objects in 

ine with state-of-the art approaches. Specifically, our method ex- 

ibits an average of 8% significant improvement in mAP for objects 

uch as Tennis court, basketball court, bridge , and vehicle . This shows 

hat our method is able to encode the characteristics of different 

ypes of objects at multiple scales in addition to their contextual 

nformation effectively. It can be observed from Table 7 that the 

roposed method significantly exceeds the existing state-of-the-art 
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Table 1 

Threshold-wise average precision (AP) comparison of mSODANet with state-of-the-art on VisDrone2019 dataset. 

Method AP (%) AP 50 (%) AP 75 (%) AR 1 (%) AR 10 (%) AR 100 (%) AR 500 (%) 

SAMFR-Cascade RCNN [40] 20.18 40.03 18.42 0.46 3.49 21.6 30.82 

EfficientDet (B5) [32] 21.40 38.60 20.20 0.59 04.12 22.38 31.75 

DSHNet [22] 24.60 44.40 24.10 – – – –

RR-Net [41] 29.13 55.82 27.23 1.02 8.50 35.19 46.05 

Patch Level Augmentation Net [42] 29.13 54.07 27.38 0.32 1.48 9.46 44.53 

mSODANet - E 6 , E 7 (Ours) 36.89 55.92 37.41 1.15 11.36 37.25 48.92 

Table 2 

Class-wise average precision (AP) comparison of mSODANet with state-of-the-art on VisDrone2019 dataset. 

Method mAP (%) Pedestrian People Bicycle Car Van Truck Tricycle Awning Bus Motor 

EfficientDet (B5) [32] 21.40 19.30 13.10 9.60 44.80 29.40 21.30 13.20 8.50 35.60 19.40 

DSHNet [22] 24.60 22.50 16.50 10.10 52.80 32.60 22.10 17.50 8.80 39.50 23.70 

RR-Net [41] 29.13 30.44 14.85 13.72 51.42 36.14 35.22 28.01 18.99 44.20 25.85 

mSODANet - E 6 , E 7 (Ours) 36.89 38.72 21.43 20.28 59.61 44.32 41.73 35.75 24.67 49.93 32.52 

Table 3 

Threshold-wise average precision (AP) comparison of mSODANet 

with state-of-the-art methods on DOTA (OBB) dataset. 

Method AP (%) AP 50 (%) AP 75 (%) 

RoI Transformer [17] 69.56 – –

GSDet [7] 68.28 – –

EfficientDet (B5) [32] 72.52 75.86 73.36 

SCRDet [19] 72.61 – –

HSP-Net [10] 80.42 – –

mSODANet - E 6 , E 7 (Ours) 82.66 86.48 81.13 

Table 4 

Threshold-wise average precision (AP) comparison of mSODANet 

with state-of-the-art methods on DOTA HBB dataset. 

Method AP (%) AP 50 (%) AP 75 (%) 

CAD-Net [6] 69.9 – –

SAPNet [43] 62.9 – - 

EfficientDet (B5) [32] 74.70 80.30 78.60 

SCRDet [19] 75.35 – –

AVDNet [16] 79.65 – –

HSP-Net [10] 80.42 – –

mSODANet - E 6 , E 7 (Ours) 85.83 90.33 89.61 
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erformance in most of the classes. This indicates the effectiveness 

f hierarchical dilated convolutions in mSODANet to capture the 

omplex contextual information of different types of objects. How- 

ver, the pixel occupancy of the contextual information accompa- 

ied with the small objects is relatively less than the object itself, 

hich shows slightly less impact in ship class. 

From the quantitative results, we observe that the mSODANet 

chieves a significant improvement in the detection performance 

ver the recent methods, such as GSDet [7] , CADNet [6] , and HSP-

et [10] , though they leverage the dilated convolutions, feature ag- 

regation module, and their combination. This is due to the benefit 

f hierarchical dilated convolutions which are introduced at vari- 

us levels of BFAM along with EfficientNet backbone network. Our 
Table 5 

Class-wise average precision (AP) comparison of mSODANet with state-of-the-art method

Method PL BD BR GTF SV LV S

EfficientDet (B5) [32] 88.43 79.84 52.11 71.58 69.36 72.92 7

ROI Transformer [17] 88.64 78.52 43.44 75.92 68.81 73.68 8

SCRDet [19] 89.98 80.65 52.09 75.92 68.81 73.68 8

GSDet [7] 81.12 76.78 40.78 75.89 64.50 58.37 7

HSP-Net [10] 90.42 86.91 62.57 79.96 78.13 81.86 8

mSODANet - E 6 , E 7 (Ours) 92.32 90.53 64.39 83.36 81.75 83.89 8

7 
SODANet exhibits its consistency in handling the characteristics 

f all the objects in three object detection datasets. 

.4. Qualitative analysis 

Fig. 5 illustrates the results of object detection on three va- 

ieties of benchmark datasets using our mSODANet. Fig. 5 (a) 

resents the results of mSODANet on VisDrone2019 dataset depict- 

ng different types of objects under various scenarios. Similarly, the 

bjects of NWPU VHR-10 dataset with different characteristics are 

etected using mSODANet and their results are shown in Fig. 5 (b). 

nd the results of mSODANet on different types of objects from 

oth DOTA (OBB) and DOTA (HBB) are shown in Fig. 5 (c) and (d),

espectively. These results demonstrate the robustness of the de- 

ection process in our mSODANet and ensure its consistency on 

ifferent types of objects under various scenarios. This is due to 

he fact that the employment of hierarchical dilated convolution 

etwork and the BFAM in conjunction with EfficientNet backbone 

ffectively captures different contextual information of the objects 

hat helps in improving the detection performance. It is also ob- 

erved that the hierarchical dilated convolution network in mSO- 

ANet also performs equally well on arbitrary sized objects with 

ifferent contextual information. 

.5. Ablation study 

We explored various input image resolutions to feed into the 

ackbone EfficientNet network to accommodate the various in- 

ut resolutions of three benchmark object detection datasets. It 

s found from the experimental results that EfficientNet B3 back- 

one network works well on NWPU VHR-10 dataset in compari- 

on to VisDrone2019 and DOTA datasets. This is due to the close- 

ess of the input resolution of images in NWPU VHR-10 dataset 

896) while the input resolution of VisDrone2019 is 1200 & DOTA 

s 10 0 0. This is the reason to opt EfficientNet-B5 backbone network 

hose input resolution is 1280 for VisDrone2019 & DOTA datasets. 
s on DOTA OBB dataset. 

H TC BC ST SBF RA HA SP HC 

2.75 87.49 80.46 85.32 61.87 61.94 71.05 75.48 57.31 

3.59 90.74 77.27 81.46 58.39 53.54 62.83 58.93 47.67 

3.59 90.85 87.94 86.86 65.02 66.68 67.00 68.24 65.21 

4.21 89.92 79.40 78.83 64.54 63.67 66.04 58.01 52.13 

5.27 90.80 87.30 85.94 69.96 72.11 84.13 80.99 69.88 

3.11 92.93 90.73 89.84 73.96 72.87 83.90 87.79 68.62 
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Table 6 

Class-wise average precision (AP) comparison of mSODANet with state-of-the-art methods on DOTA HBB dataset. 

Method PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC 

CAD-Net [6] 87.80 82.40 49.40 73.50 71.10 63.50 76.70 90.90 79.20 73.30 48.40 60.90 62.00 67.00 62.20 

EfficientDet (B5) [32] 89.23 82.52 54.90 73.90 71.45 75.38 75.69 89.92 81.56 87.73 63.05 63.56 74.19 78.86 59.13 

SCRDet [19] 90.18 81.88 55.30 73.29 72.09 77.65 78.06 90.91 82.44 86.39 64.53 63.45 75.77 78.21 60.11 

HSP-Net [10] 90.42 86.91 62.57 79.96 78.13 81.86 85.27 90.80 87.30 85.94 69.96 72.11 84.13 80.99 69.88 

mSODANet - E 6 , E 7 (Ours) 95.58 92.31 68.42 85.98 87.12 87.88 90.17 95.21 94.63 90.26 74.89 75.92 88.74 84.83 76.07 

Note: The short names for categories are defined as PL-Plane, BD-Baseball diamond, BR-Bridge, GTF-Ground track field, SV-Small vehicle, LV-Large vehicle,SH-Ship, TC-Tennis 

court, BC-Basketball court, ST-Storage tank, SBF-Soccer-ball field, RA-Roundabout, HA-Harbor, SP-Swimming pool, and HC-Helicopter. 

Table 7 

Class-wise average precision (AP) comparison of mSODANet with state-of-the-art methods on NWPU VHR10 dataset. 

Method mAP (%) Airplane Ship Storage tank Baseball diamond Tennis court Basketball 

court 

Ground track 

field 

Harbor Bridge Vehicle 

EfficientDet (B3) [32] 81.51 95.09 68.83 74.69 81.54 72.05 83.27 79.87 85.55 91.07 83.20 

Faster RCNN [2] 84.50 90.90 86.30 90.50 98.20 89.70 69.60 100.0 80.10 61.50 78.10 

Li et al. [12] 87.10 99.70 90.80 90.60 92.90 90.30 80.10 90.80 80.30 68.50 87.10 

CAD-Net [6] 91.50 97.00 77.90 95.60 93.60 87.60 87.10 99.60 100.0 86.20 89.90 

R 2 CNN++ [44] 91.75 100.0 89.41 97.22 97.00 83.15 87.54 99.17 99.40 74.51 90.10 

HSP-Net [10] 93.38 99.79 92.45 96.96 98.55 90.37 91.48 99.04 88.90 87.14 89.07 

mSODANet - E 6 , E 7 (Ours) 97.81 100.0 88.14 99.46 100.0 98.92 99.11 98.73 98.26 97.65 98.23 

Fig. 5. The detection results on some images using mSODANet (our proposed method) with different characteristics. (a) VisDrone2019: (i) Arbitrary sized objects with 

multiple field-of-views (ii) Objects at different illuminations; (b) NWPU VHR-10: (i) Objects with different rotations and arbitrary spatial arrangements (ii) Different types of 

multi-scale objects; (c) DOTA (OBB) & (d) DOTA (HBB): (i) Multi-scale objects with arbitrary spatial distribution (ii) Densely-packed multi-scale objects. 

8 
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Table 8 

Threshold-wise average precision (AP) comparison of mSODANet on VisDrone2019 dataset for different dilation 

settings. 

Method AP (%) AP 50 (%) AP 75 (%) AR 1 (%) AR 10 (%) AR 100 (%) AR 500 (%) 

EfficientDet (B5) [32] 21.40 38.60 20.20 0.59 04.12 22.38 31.75 

mSODANet - E 7 (Ours) 34.33 56.63 33.14 0.96 9.69 36.35 48.02 

mSODANet - E 4 , E 5 (Ours) 33.37 52.58 34.25 0.83 8.64 33.14 45.72 

mSODANet - E 6 , E 7 (Ours) 36.89 55.92 37.41 1.15 11.36 37.25 48.92 

Table 9 

Threshold-wise average precision (AP) comparison of mSODANet 

on DOTA (OBB) dataset for different dilation settings. 

Method AP (%) AP 50 (%) AP 75 (%) 

EfficientDet (B5) [32] 72.52 75.86 73.36 

mSODANet - E 7 (Ours) 83.41 87.23 81.76 

mSODANet - E 4 , E 5 (Ours) 79.34 83.92 78.68 

mSODANet - E 6 , E 7 (Ours) 82.66 86.48 81.13 

Table 10 

Threshold-wise average precision (AP) comparison of mSODANet 

on DOTA HBB dataset for different dilation settings. 

Method AP (%) AP 50 (%) AP 75 (%) 

EfficientDet (B5) [32] 74.70 80.30 78.60 

mSODANet - E 7 (Ours) 86.93 89.46 85.38 

mSODANet - E 4 , E 5 (Ours) 82.78 86.94 87.73 

mSODANet - E 6 , E 7 (Ours) 85.83 90.33 89.61 

Table 11 

Threshold-wise average precision (AP) comparison of mSODANet 

on NWPU-VHR10 dataset for different dilation settings. 

Method AP (%) AP 50 (%) AP 75 (%) 

EfficientDet [32] 81.51 83.64 80.73 

mSODANet - E 7 (Ours) 97.23 98.47 95.81 

mSODANet - E 4 , E 5 (Ours) 94.82 95.23 93.06 

mSODANet - E 6 , E 7 (Ours) 97.81 99.15 96.33 

Table 12 

Floating operations (FLOPs) comparison between proposed mSODANet and 

EfficientDet. 

Method Dataset AP (%) Parameters GFLOPs 

EfficientDet (B3) NWPU VHR10 81.51 12 M 1.8 

mSODANet (B3) NWPU VHR10 97.81 13 M 1.93 

EfficientDet (B5) VisDrone2019 21.40 20 M 9.9 

mSODANet (B5) VisDrone2019 36.89 22 M 10.75 
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Further, we place DN 1 and DN 2 of hierarchical dilated network 

HDN) at various levels of multi scale contextual features to inves- 

igate the effectiveness of the proposed mSODANET. The threshold- 

ise average precision of different HDN combinations on VisDrone 

019, DOTA OBB, DOTA HBB, and NWPU-VHR 10 can be seen 

rom Tables 8–11 . 

From Tables 8–11 , we can infer that the utilization of E 6 and 

 7 features for DN 1 and DN 2 of HDN leads to state-of-the-art per- 

ormance when compared to E 4 and E 5 for DN 1 and DN 2 . Also, we

an observe the performance deflation when using single DN 1 ( E 7 ) 

omponent over two dilation components ( DN 1 and DN 2 ). More- 

ver, the proposed mSODANet achieves significant improvement 

ver EfficientDet [32] . This is due to the incorporation of contex- 

ual information of objects (small, medium, and large) at various 

cales. 

Table 12 presents the model complexity of our proposed mSO- 

ANet in terms of floating point operations (FLOPs). It can be 

bserved from the table that our proposed approach achieves 

etter multi-scale object detection performance than EfficientDet 
9 
32] and uses slightly more FLOPs due to additional hierarchical 

ilation operations. 

. Conclusion 

Due to the large variation in object sizes, distribution of dense 

bjects, view-point, occlusions, and illumination changes, the ob- 

ect detection task in aerial images has become extremely chal- 

enging task. To address these challenges, in this paper, we pro- 

ose a novel network, mSODANet for multi-scale object detec- 

ion in aerial images. Specifically, we jointly combine the back- 

one network, hierarchical dilated network, and bi-directional fea- 

ure aggregation module (BFAM) systematically to learn the effi- 

ient multi-scale contextual information of objects. The backbone 

etwork helps to extract robust multi-scale features. And, the hi- 

rarchical dilated network learns the contextual information of ob- 

ects at multiple-scales and multiple field-of-views. The obtained 

ulti-scale features are further refined with BFAM to incorporate 

ffective representation of varied size and dense objects. Thus, the 

roposed object detection framework learns the characteristics of 

ifferent objects in aerial images and further enhances multi-scale 

bject detection capability in the network. The performance of 

he proposed mSODANet is evaluated on three challenging aerial 

mage datasets and reported state-of-the art performance on all 

hree datasets. Moreover, the quantitative and qualitative analysis 

resent the effectiveness of proposed approach and demonstrate 

he robustness of the model. However, our proposed approach re- 

uires large amount of storage capability for effective data pooling 

o a centralized location. To overcome such limitations, we can ex- 

lore federated learning for computation-effective training in the 

uture. Also, we can extend mSODANet to preserve data privacy in 

bject detection tasks in aerial images through adversarial attacks. 
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