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Abstract In this work, we present a novel multi-scale feature fusion network
(M-FFN) for image captioning task to incorporate discriminative features and
scene contextual information of an image. We construct multi-scale feature
fusion network by leveraging spatial transformation and multi-scale feature
pyramid networks via feature fusion block to enrich spatial and global semantic
information. In particular, we take advantage of multi-scale feature pyramid
network to incorporate global contextual information by employing atrous
convolutions on top layers of convolutional neural network (CNN). And, the
spatial transformation network is exploited on early layers of CNN to remove
intra-class variability caused by spatial transformations. Further, the feature
fusion block integrates both global contextual information and spatial features
to encode the visual information of an input image. Moreover, spatial-semantic
attention module is incorporated to learn attentive contextual features to guide
the captioning module. The efficacy of the proposed model is evaluated on the
COCO dataset.

Keywords Image captioning · convolutional captioning · language attributes ·
language generation

1 Introduction

Automatically generating a natural language sentence by distilling the content
of an image, often termed as image captioning, is a challenging task that
connects both computer vision and natural language processing (NLP). This
task goes beyond the conventional tasks such as classification [1] and object
detection [2,3] as it requires a model to capture the holistic representation of
an input image, and describe the content of visual scene in natural language.
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Captioning an image is an emerging challenge in visual scene understanding,
and advocates the number of potential applications in the field of computer
vision. It can aid visually impaired people, reinforce the content search on
streaming platforms, strengthen the robotic vision, and allow users to organize
and navigate unstructured visual data.
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Fig. 1 Overview of the proposed multi-scale feature fusion network (M-FFN). Typically,
the proposed M-FFN combines the spatial features of spatial transformer network, multi-
scale semantic features of dilated network, and global features of ResNet backbone network
to encode visual content of an image. The combined features are further fed to the attention
based LSTM decoder to generate the caption of an image.

Image captioning has gained a lot of interest by bringing vision and lan-
guage together. The prevalent approach to image captioning is an encoder-
decoder framework [4–8], inspired from machine translation [9]. It explores
the combination of convolutional neural networks (CNNs) and recurrent neu-
ral networks (RNNs) to model visual and textual features. The convolutional
neural network encodes the visual information of an input image and then
recurrent neural network (RNN) based decoder undertakes the encoded repre-
sentation to generate a caption. Remarkable works on image captioning [10–12]
learn a probabilistic model over the caption, conditioned on either image or
object features.

Until recently, image captioning approaches leverage the visual information
captured from the last convolutional layers of CNN [6,13] or the visual object
region features extracted by the object detection module [11,14]. However,
it is typically inadequate to use one visual feature to encode finer details
of objects [15]. The potential drawbacks with the existing image captioning
approaches are: i) Lack of fine-grained details and spatial context. ii) Suffer
from high intra-class variability caused by spatial transformations. iii) Fail to
incorporate multi-scale contextual information.
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Recent methods [16,17] on visualizing the characteristics of each CNN
layer depict that the features of early layers and top layers of CNN network
are complementary by nature, where top layers of the network capture more
semantic information but lack fine-grained details [18]. And, early layers fea-
tures contribute spatial details of an image but lack semantic information [19].
Therefore, spatial context and fine-grained details of local features are need
to be captured together with the semantic information of an image [15]. Mo-
tivated by the above observations, we propose a feature fusion network to
bridge the semantic and spatial gap between the early-level and top-level fea-
ture maps. Mainly, the proposed fusion framework concatenates the semantic
information with the spatial context of local features to capture scene contex-
tual information of an image.

Although, the feature fusion networks are extremely powerful for any com-
puter vision task, their performance may degrade adversely when the data is
embodied by intra-class variability caused by spatial transformations such as
affine or perspective [20]. Therefore, attaining the invariance to such transfor-
mations is highly beneficial for vision tasks such as image captioning. One of
the effective methods to bring invariance to geometric transformations in deep
convolutional network is the spatial transformer network (STN) [21]. Hence-
forth, we leverage the STN framework that can be seamlessly incorporated into
our proposed feature fusion network to transform the input data and further
achieve spatial invariance.

In addition, we capture the multi-scale contextual information to encode
effective scene contextual information by exploring the semantic features with
various filters at multiple dilation rates and multiple field-of-views. In particu-
lar, we apply several parallel atrous/ dilated convolutions on semantic features
with different rates. Even though the top layers of CNN network holds rich
semantic information, the definite information of object boundaries is lacking
due to the recurrent pooling or convolutions with striding operations within the
encoder network. This issue could be addressed by incorporating the atrous/
dilated convolution over the extracted semantic feature.

Attempting to combine the advantages of aforementioned methods in this
work, we first point out the simple fusion network with semantic and spatial
information for vision-to-language tasks to account for discriminative features
along with the scene contextual information. Then, we exploit the spatial
transformation network on early layers of convolutions to remove intra-class
variability caused by spatial transformations. Further, we employ dilated net-
work with several atrous convolutions on semantic feature map to extract
contextual information of an image at multiple scales. In addition, we incor-
porate spatial-semantic attention (SSA) module to learn the contextual rela-
tions among the spatial and semantic features. The overview of the proposed
multi-scale feature fusion network is illustrated in the Figure 1.

In a nutshell, the proposed multi-scale feature fusion network (M-FFN)
builds on the observation that although the top layers of convolutional net-
works are more effective to capture semantic information, they are inadequate
to encode the fine-grained details and spatial context such as small objects



4 Jeripothula Prudviraj et al.

and spatial relationships. The earlier layers, on the other hand, are rich in
spatial concepts but do not capture semantics. This observation provokes to
construct multi-scale feature fusion network. Further, to achieve invariance
and multi-scale information, we take advantage of spatial transformer network
and dilated network. The main contributions of our work are summarized as
follows.

– We propose a multi-scale feature fusion network to effectively encode the
fine-grained details of local features and the scene contextual information
of an image for image captioning task.

– We build spatial transformer network on early layers of fusion network
to incorporate invariance for the spatial features and probe the dilated
network to achieve multi-scale contextual information.

– A novel feature fusion block and spatial-semantic attention module is ex-
ploited to align various visual features which further directed to caption
decoding module.

– The proposed feature fusion network outperforms the significant works of
image captioning on COCO dataset.

2 Related work

In this section, we first present the various feature encoding mechanisms that
are exploited semantic information, spatial concepts, multi-scale contextual
information, and spatial invariant features on several computer vision tasks.
Then, we review the prominent works of image captioning task.

2.1 Visual feature encoding networks

Farahzadeh et al. [15] proposed a framework to learn weighted combination of
local semantic topics along with global and spatial information for scene ac-
tion recognition. A combined coarse and fine semantics information is explored
via shortcut connection fusion block in [18] to model feature correlation and
align the extracted features of two different domain. Ma et al. [22] exploited
hierarchical features of deep CNN to learn adaptive correlation filters on the
outputs of each convolutional layer for robust visual tracking. Mishra [23] et al.
introduced a novel fuzzy inferencing technique combined with classical CNN
network to extract efficient frame features for action recognition. Recently,
Ding [24] et al. propose stimulus-driven attention and the concept-driven at-
tention on CNN+LSTM architecture for image captioning task. To bridge the
gap between low-level and high-level features, Zhang et al. [19] proposed Ex-
Fuse network which introduces semantic information into spatial features and
spatial details into high-level features. Si et al. [25] introduced a multi-features
fusion module to obtain spatial features and enlarge receptive field. In [26], the
three stage inference information processes are assembled to explicitly model
the information flows and structures for human parsing task. Further, Lu et
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al. [27] proposed a CD-LinkNet network to combine the multi-level features in
order to resolve deformation and multi-scale variations.

The spatial transformer network (STN) [21] is the well accepted method
on improving the CNNs to remove spatial transformations such as affine or
perspective. This learnable module in the network allows the spatial manipu-
lation of data without any explicit supervision. Annunziata et al. [20] proposed
dense fusion network by combining multiple STNs, namely, densely fused spa-
tial transformer network (DeSTNet). Luo et al [28] incorporates spatial trans-
former network module in person re-identification task to sample an affined
image from the holistic image in order to match the partial image. The ori-
ented spatial transformer network (OSTN) is presented in [29] to detect the
pedestrians in fish-eye images effectively. The multi-scale context information
can be achieved by incorporating atrous convolutions in the CNN network.
Chen et al. [30] utilized atrous convolutions for semantic image segmentation
where atrous convolutions were used to explicitly control the resolution of
Deep CNNs and enlarge the field of view of filters effectively in order to em-
ploy larger context without increasing the number of parameters. Further, it
is combined in encoder-decoder framework [31] to probe the CNN features at
multiple rates for encoding the multi-scale contextual information.

2.2 Image captioning

Current surge of research interest in captioning an image is outgrowing by
bridging contextual visual representation and natural language expression. The
prevalent approach for image captioning is encoder-decoder framework, where
convolutional neural network is utilized as the encoder for semantic visual rep-
resentation, while recurrent neural network (RNN) is often incorporated as the
decoder for generating a caption. Vinyals et al. [32] presented the NIC model
where the pre-trained CNN model is leveraged to extract image features and
long-short term memory network is utilized to generate caption. Inspired by
CNN-LSTM based framework, Jia et al. [33] introduced the gLSTM approach
where global visual features are incorporated with rich semantic information
to guide caption decoding module. A deep hierarchical encoder-decoder net-
work is presented in [34] for image captioning, where it explores the vertical
depth of encoder-decoder framework.

In the conventional CNN-LSTM framework, visual information may be lost
or intruded by the visual noises while generating natural language sentence.
To mitigate such issues, the attention mechanism offers more local visual clues
to language module. In other words, the visual features extracted at the last
convolutional layer of CNN are selectively focuses on prominent regions of an
image while generating the sentence. Xu et al. [35] proposed soft and hard
attention mechanisms for image captioning task. Similarly, Lu et al. [36] in-
troduced a novel adaptive attention model with a visual sentinel to learn to
focus on either image regions or to the visual sentinel at a given time-step.
The spatial and channel-wise attention in convolutional layers is incorporated
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in [37] to attend spatial locations of feature maps at multiple layers and multi-
ple channels. Anderson et al. [14] applied attention at the level of objects and
other salient regions of an image by leveraging bottom-up and top-down atten-
tion mechanisms. By feeding attended image regions solely to the captioning
module, the CaptionNet achieved impressive performance on image caption-
ing task. Recently, Feng et al. [7] introduced a cascaded revision network for
novel object captioning without external domain knowledge. Further, a ran-
dom image cropping and patching technique is introduced in [38] to augment
new images to the dataset for image captioning task.

Although the existing approaches of image captioning task are showing
significant performance, they fail to encode attentive multi-scale contextual
features of an image to generate caption of an image. Motivated by this, we
propose a novel feature fusion process that learns multi-scale contextual infor-
mation of an image and generates fine-grain captions.

3 Encoder-decoder model for image captioning

This section describes the widely accepted encoder-decoder framework [32] for
image captioning. Let, an image I to be captioned by a sentence S, where S
= {w1, w2, w3, . . .} consisting of Ns words (w). We first encode the semantic
informationWI of an image using deep CNN. Then, a long-short term memory
(LSTM) network is employed to generate the captioning. At each time step
t, the LSTM network recursively process the encoded information using input
gate it, forget gateft, output gate ot, and context vector ct are given by

it = σ(Wixxt +Wihht−1 + bi),

ft = σ(Wfxxt +Wfhht−1 + bf ),

ot = σ(Woxxt +Wohht−1 + bo),

ct = it ⊙ ϕ(Wcxxt +Wchht−1 + bc) + ft ⊙ ct−1,

ht = ot ⊙ tanh(ct),

zt =Wzht,

where ϕ is maxout non-linearity and σ is the sigmoid activation function.
W∗, V∗, U∗, and b∗ are the parameters to be learned. The distribution over the
next word for obtained ht and ct can be defined as

wt = softmax(zt). (1)

For a given input image-caption pair, the objective of the encoder-decoder
model is to minimize the loss on the model parameters θ of the model as

L(θ) = −
T∑

t=1

log(pθ(wt|w1, w2, . . . , wt−1, I)), (2)

where (pθ(wt|w1, w2, . . . , wt−1, I)) is devised from Equation 1
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4 Proposed multi-scale feature fusion network for image captioning

In this work, we exploit feature fusion problem in the encoder-decoder based
image captioning framework. In general, the pre-trained convolutional neural
network is employed as encoder module, where it generates spatial features
from early layers and semantic features from top layers. The decoder part ac-
quires the semantic features and then generates a natural language sentence
using recurrent neural networks such as LSTMs. Farahzadeh et al [15] argue
that the utilization of single visual feature vector is often insufficient to repre-
sent the scene contextual information. In other words, the semantic features
extracted at top layers fail to encode finer details of small objects. To mit-
igate this problem, a feature fusion method is proposed in computer vision
community for various tasks such as segmentation [19], human parsing [26],
action recognition [39], object detection [2], and so on. Typically, the feature
fusion network generates the low-level but high-resolution features from the
bottom layers and high-level low-resolution features from the top layers and
then combines the features from both top-down and bottom-up path way in
order to achieve scene contextual information of an image. However, the spa-
tial features of bottom layers adversely affected by the intra-class variability
caused by the spatial transformations. And, the semantic features extracted
from top-layers failed to incorporate the multi-scale contextual information of
an image. Hence, we propose a novel multi-scale feature fusion network which
address the aforementioned challenges.

In a nutshell, we present the encoder-decoder network for image caption-
ing, as shown in Figure 2, where encoder network is constructed using novel
multi-scale feature fusion network and decoder module contains LSTM based
captioning framework. In the following sections, we present the proposed visual
encoder module and caption decoding module.

4.1 Visual encoder

The visual encoder is a feature extractor network that extracts multi-scale
scene contextual information of an image by processing given input image
through various sub-network modules. Mainly, the proposed visual encoder
network consists of five components, namely, backbone network, spatial trans-
former network, dilated network, feature fusion block, and spatial-semantic
attention module.

4.1.1 Backbone network

We use ResNet [1] model pretrained on ImageNet [40] as the backbone fea-
ture extractor for our visual encoder in order to encode the visual represen-
taion of an image. The ResNet network consists of 5 layers, namely, Conv1,
Conv2, Conv3, Conv4, and Conv5, where each Conv layer contains varied
number of Bottle-Neck modules. The semantic information of different objects
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Fig. 2 Framework of the proposed multi-scale feature fusion (M-FFN) network. The pro-
posed M-FFN has five major components, i.e., ResNet-101 backbone network, spatial trans-
former network, dilated network, feature fusion block, and spatial-semantic attention mod-
ule. The ResNet backbone network outputs the global features from Conv5 layer, semantic
features from Conv4 layer, and spatial features from Conv3 layer. Then, the spatial trans-
former takes the spatial feature of Conv3 and outputs the spatial invariant features. Further,
The dilated network incorporates the multi-scale semantic features. A feature fusion block
combines the spatial-invariant features, multi-scale semantic features, and global features to
achieve multi-scale contextual information of an image. An attention layer selectively focuses
on prominent features of multi-scale contextual features and feeds through LSTM caption
decoding module. The LSTM network takes the attention weights, word embeddings and
generates the precise and diverse captions.

is strengthened as visual features are propagated from bottom to top layers
of network. And, the spatial information of objects in a visual scene gradually
reduces. Henceforth, we propose to learn the deep network which combines
the advantages of both spatial and semantic features of an image to generate
a caption.

The overall image captioning framework follows the CNN-LSTM architec-
ture, as shown in Figure 2. From the backbone ResNet framework, we first
remove the fully-connected layers as they expose little spatial resolution of
1 × 1 and utilize only the hierarchical features of Conv layers. The proposed
Multi-sccale feature fusion network (M-FFN) extracts the 3 different semantic
levels of feature maps from the ResNet model, namely, Conv3, Conv4, and
Conv5. Given the input image, the extracted Conv layers produce the spatial
resolutions of 32×32, 16×16, and 8×8 with the channel size of 512, 1024, and
2048, respectively. From Conv3 to Conv5, the spatial resolutions is gradually
decreasing and semantic information is increasing. Hence, we leverage dilation
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network on Conv4 and spatial transformer network on Conv3 layers to bridge
the gap between low-level and high-level featues. Further, we introduce feature
fusion block to embed the effective visual features. In the following sections, we
will elaborate our spatial transformer network, dilated network, and feature
fusion block in detail.

4.1.2 Spatial transformer network

The convolutional backbone networks are exceptionally prevailing models for
image captioning, but their performance is limited by the lack of ability to
handle the spatial invariance of the input data. The utilization of local max-
pooling operations has aided to the network by allowing it to learn the spatial
invariance of the positional features. However, this spatial invariance is only
achieved through a deep network of multiple max-pool and convolutional lay-
ers. And, the intermediate feature maps like Conv2 and Conv3 of CNN are
not truly invariant to large transformations of the input data [21,41]. This
limitation of CNNs is because of having only a confined and pre-constrained
polling operations for dealing with spatial transformations of data.

Unlike max-pooling layers, which are fixed and local to receptive fields,
the spatial transformer network (STN) is the appropriate method of choice for
CNNs to give the ability to remove the spatial transformations and improves
performance in an end-to-end network. The STN modules are dynamic and
spatially transform the feature map by generating a suitable transformation
for each input image. The transformation applied on each feature map handles
rotations, cropping, scaling, as well as non-rigid deformations. This not only
allows spatial transformations in the network but also detects the regions of
an image that are most important [21].

Motivated by the above observations, we employ spatial transformer mod-
ule on Conv3 feature map of ResNet backbone network to allow the spatial
invariance with in the network. This network actively transforms the features
spatially by conditioning on itself without any additional training supervision
and modification to the optimization method. As shown in Figure 3, the spa-
tial transformer network contains three components, namely, the localization
network, the grid generator, and the sampler. First, the localization network
takes the input feature map and outputs the parameters of spatial transfor-
mations that are to be applied on the feature map. Then the grid generator
takes the predicted transformation parameters to create a sample grid. The
sample grid consists of set of points which are sampled from the transformed
output. Finally, the sampler takes feature map and sampling grid as inputs
and produces the output the sampled map of input and grid points. The com-
bination of these three components is called spatial transformer network and
the functioning of each component is described as follows.

Localization network: Given input feature map F ∈ RW×H×C with
width W , height H, and channels C to the localization network, it applies the
transformation Tθ on the feature map and outputs the transformation parame-
ters θ, θ = Transloc(F ). Here, the size of θ depends on the transformation type
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Fig. 3 Spatial transformer network

such as affine or perspective. In our work, we utilize affine transformations.
Hence, the size of θ is a 6- dimensional as in Equation 3.

Grid generator: The grid generator takes the output of localization net-
work and applies a sampling kernel to wrap the input feature map. For in-
stance, consider Tθ is a 2D affine transformation Qθ such as image and then
the output pixels are defined to lie on a regular grid Z = Zi of pixels Zi =
(xti; y

t
i) is formulated using(

xsi
ysi

)
= Tθ(Zi) = Qθ

xtiyti
1

 =

[
θ11 θ12 θ13
θ21 θ22 θ23

]xtiyti
1

 , (3)

where (xti; y
t
i) and (xsi ; y

s
i ) are the target coordinates of output feature map

and source coordinates in the input feature map, and Qθ is the affine trans-
formation matrix.

Sampler: The sampler takes the set of sampling points T(G), along with
the input feature map F to perform spatial transformation of the feature map
and produces the sampled output feature map Of using

V c
i =

H∑
n

W∑
m

F c
nmg(x

s
i −m;ϕx)g(y

s
i − n;ϕy)

∀i ∈ [1 . . . H ′W ′]∀c ∈ [1 . . . C] . (4)

In brief, the spatial transformer network formed by the combination of local-
ization network, grid generator, and sampler allows our encoder network to
learn to actively transform the convolutional feature maps and thus provides
spatial invariance to the early layers like Conv3 in our encoder network.

4.1.3 Dilated network

Deep CNNs are showing great success on computer vision tasks such as image
classification, object detection, and high-level tasks such as image captioning
by learning semantic features. Although the top convolutional layers of CNN
backbone network have rich semantic information, the finer details of object
boundaries are missing due to the repeated pooling and strided convolutions
with in the backbone network. To address this issue, we employ dilated network
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(Figure 4) on Conv4 layer of ResNet backbone network to extract denser
feature information.

We construct dilated network with several parallel dilated convolutions
to capture the scene contextual information at multiple scales. In particular,
dilated convolutions allow us to explicitly control the resolutions of feature
maps and helps to enlarge the field of view of filters which further employ
larger context information without increasing the number of parameters and
amount of computation. In addition, the parallel dilated convolutions in the
dilated network robustly segment the objects at multiple scales and probes
each layer with filters at multiple sampling rates and effective fields-of-views,
thus it incorporates multi-scale semantic information. Given a two dimensional
signal such as image, for each spatial location p on the output feature map k
and a convolutional filter w, the dilated convolution is applied over the input
feature map j as follows

k[p] =
∑
l

j[p+ r · l]w[l], (5)

where r denotes the dilation rate at which we sample the input and r = 1 is a
special case that demonstrates the standard convolution. With the change of
dilation rate, the filter’s field of view changes adaptively.

4.1.4 Feature fusion block

The purpose of feature fusion block is to achieve the multi-scale scene con-
textual information of an image by combining the spatial features, multi-scale
semantic features, and global features. In the proposed framework, we extract
spatial features from low-level layers of ResNet backbone network i.e., Conv3.
Usually, the features extracted from early layers of deep CNN network are not
spatially invariant to the input data. Hence, we employ spatial transformer
network to make extracted Conv3 features spatially invariant. Typically, the
spatial generator network learns to limit the intra-class variance caused by
spatial transformations and produces the feature map which is equal to the
input feature map. Thus, we achieve spatial features that are freed from affine
transformations.
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On the other hand, the high level features extracted from Conv4 layer of the
backbone network are limited with spatial details. Thus, it looses detailed in-
formation of objects. To encode the finer details of objects, we leverage dilated
network which is able to control the feature resolution without retraining the
backbone network. Further, we employ parallel atrous convolutions to encode
the semantic information at multiple scales.

In addition to spatial and multi-scale semantic features, the global semantic
features is extracted from the top layer of backbone network i.e., Conv5. Since
the spatial size of top-layer feature maps (Conv4 and Conv5) is very small,
we adaptively pool the all features to spatial size of Conv3 feature map. The
extracted feature maps of Conv3, Conv4, and Conv5 are further concatenated
and processed with standard 1× 1 convolutions before feeding it to attention
module.

On extracting convolutional features C3, C4, and C5 from Conv3, Conv4,
and Conv5, respectively, the mathematical formulation of the feature fusion
block can be defined as:

B1 = STN(C3)

B2 = DN(C4)

Fusion1 = Conv(B1) + pool(C5)

Fusion2 = Conv(B2) + pool(C5)

Feature fusion = Conv(Fusion1) + Conv(Fusion2), (6)

where B1 and B2 represent the output features of spatial transformer network
(STN) and dilated network (DN). Conv denotes the convolutional operation.

In brief, the visual encoder is incorporated with rich spatial, semantic,
and global features. Thus, it effectively represents the multi-scale contextual
information of an image. Further, we elaborate the caption decoding module
with the context of encoded feature representation.

4.1.5 Spatial-semantic attention

Recently, the self-attention mechanisms are widely explored for various com-
puter vision tasks [42,43] to incorporate long range dependencies among visual
features. Inspired by its effectiveness on context modelling, we leverage self-
attention in our proposed approach to capture the contextual relations among
spatial features and semantic features.

Given a concatenated spatial and semantic features M of size H ×W ×C,
the spatial-semantic attention (SSA) module constructs an attention map A
of size C × C to learn the contextual relational features. As shown in Figure
5, given an input M ∈ RN×C , we first generate two feature maps B and E
of size N × C ′ by employing convolutional layers, where N = H × W and
C ′ = C/τ . Then, we perform matrix multiplication between transpose of E
and B, resulting in a C ′ × C ′ attention map A. The obtained attention map
A is multiplied with convolutional feature map J ∈ RN×C′

and fed to the
another convolutional layer to restore the same size ofM . The resulting feature
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Transpose

Softmax

Fig. 5 Spatial-semantic attention

map is concatenated with the input feature map M via residual connection to
generate the output feature map M ′ ∈ RN×C . The computation of SSA can
be formulated as

M ′ =W ∗ (J ·A) +M, (7)

where W denotes the convolutional kernel after A, and τ controls the output
channel dimension. We experimentally set τ as 2.

4.2 Caption decoder

On achieving encoded representation of an image, we employ the attention
mechanism before feeding it to the LSTM network in order to selectively
choose the significant regions of visual encoder. Given a set of encoder fea-
tures refereed as annotation vectors, the LSTM decoder learns to focus on
significant regions of an image by selecting a subset of all the annotation vec-
tors. Let a = {a1, a2, . . . , aL} be the set of annotation vectors. Then, ai, i=
{1, 2, . . . , L} is the extracted feature vector at image region i. For each region
i, the attention mechanism assigns a positive weight of αi. We compute the
attention weight αi by designing the attention model qatt using the annotation
vector ai and previous hidden state of LSTM cell ht−1. The attention module
at image location i is formulated as

bti = qatt(ai, ht−1),

αti =
exp(bti)∑L
k=1 exp etk

.

On obtaining the attention weights, the context vector (ct) is updated as

ct = ψ({ai}, {αi}), (8)

where ψ is a function that outputs a single vector from the set of annotation
vectors and their corresponding attention weights. Further, an average of the
annotation vectors predicted by the hidden state of the LSTM and initial
memory are fed through two separate multi-layer perceptrons (MLPs).

c0 = ginit,c

(
1

L

L∑
i

ai

)
h0 = ginit,h

(
1

L

L∑
i

ai

)
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We generate the word probabilities given the context vector, LSTM hidden
state, and previous words using

p(wt) = −
T∑

t=1

log(pθ(wt|w1, w2, . . . , wt−1, a)), (9)

where θ are the parameters of the model.
In this work, we leverage multi-stage LSTM network to generate rich fine-

grained captions of an image. Typically, the multi-stage LSTM network is
incorporated with one coarse LSTM (LSTMcoarse) and two finer LSTM net-
works (LSTMfine), where each LSTM network operates on the outputs of
previous LSTM network and attention vector. In particular, the LSTMcoarse

generates the coarse-grained captions, and successive LSTMfine networks re-
fine the generated captions and produce fine-grained captions. At each stage,
we input previous LSTM hidden vector and attention weights.

5 Experimental results

In this section, we validate the performance of the proposed multi-scale feature
fusion network (M-FFN) with quantitative and qualitative analysis. First, we
present the quantitative analysis with state-of-the-art models using standard
evaluation metrics like BLEU-n, METEOR, ROUGE L, and CIDEr. Then,
the generated captions and their attention maps are illustrated to analyze the
performance of our M-FFN qualitatively.

5.1 Dataset

We demonstrate the performance of the proposed M-FFN model by conduct-
ing experiments on two large datasets of image captioning, i.e., Flickr30K and
COCO. Flickr30k dataset consists of 31k images with 158k crowd-sourced cap-
tions. The images of Flickr30k depict various events and activities performed
by humans. Due to the lack of official split, We adopt publicly available split
from [36,44], which includes 29k images for training, 1000 images for both
validation and test.

The COCO dataset provides 82k images for training, and 40k images for
both validation and test set. This dataset renowned to be the challenging
dataset as it contains multiple objects in the context of complex visual scenes.
Each image in the dataset has annotated with 5 captions. To validate the
model, we use widely adopted data split, which is 5K images for validation
and test set, each. Further, we evaluate generated captions using conventional
evaluation metrics like BLEU-1 and BLEU-4 [45], METEOR (MR) [46],
ROUGE L (RL) [47], and CIDEr (Cr) [48]. In brief, all these metrics compute
the coherence between the n-gram occurrence in reference caption and gener-
ated caption. The coherence is weighted by the diversity and saliency of the
ground-truth caption.
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5.2 Implementation details

We implement the proposed M-FFN model using Pytorch framework. We uti-
lize ADAM optimizer [49] with a learning rate of 0.0001 and 0.0004 for encoder
and decoder. The batch size is set to 32 and learnt until the accuracy on the
validation set does not change for 15 epochs. In addition, the decay rate is
employed when the model does not improve for six consecutive epochs. The
embedding dimension of visual encoder and attention layer is set to 2048 and
512, whereas the LSTM hidden layer and context layer dimension set to 512.
And, we set the channel dimension of spatial transformer network to 512,
dilated network to 256, and feature fusion network to 1024. In the follow-
ing subsections, we will present the detailed implementation details of visual
encoder and caption decoder modules.

5.2.1 Visual encoder

We use ResNet-101 network pre-trained on ImageNet as a backbone network
for our visual encoder, where we extract convolutional features of size 32 ×
32 × 512, 16 × 16 × 1024, and 8 × 8 × 2048 from Conv3, Conv4, and Conv5
layers, respectively. At first, we apply spatial transformer network on Conv3
layer to incorporate spatial invariance to extracted spatial features. We employ
spatial transformer network with localization, regressor, and postconv layers.
The localization network is constructed using 5×5 filter with 512 channels and
Max-pool with stride 2. As illustrated in Equation 3, we employ 3 × 2 affine
matrix in regression network. For postconv layer, we use 5× 5 filters with 512
channels. The output of postconv layer is concatenated with the adaptively
pooled Conv5 features to achieve spatial-semantic features of an image.

To achieve multi-scale semantic features, we incorporate dilated network
on Conv4 layer of ResNet backbone network. Typically, we employ parallel
dilated convolutions with the filter size of 3 × 3 and dilation rates of 2, 4,
and 6. In addition, we add average pooling and 1× 1 convolutions to employ
features from various filed of views. We set number of channels to 256 in the
entire dilated network and concatenated all 5 layers features before feeding it
to the adaptive pooling layer. The output features of adaptive pooling layer are
concatenated with adaptively pooled Conv5 features to encode rich multi-scale
semantic features. Further, we concatenate the spatial features and multi-scale
semantic features to produce multi-scale scene contextual information of an
image.

5.2.2 Caption Decoder

At first, the attention layer takes the multi-scale contextual features and gener-
ates the attention weights of the feature map to selectively focus the important
features of input feature. Then, the attention weights are fed to the LSTM net-
work to generate the caption of an image. We utilize the standard LSTM cells
to learn the word sequences using annotation vectors obtained from attention
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layer and input word embeddings at time instance t. The dimension of at-
tention layer, LSTM hidden units, and LSTM context vector is fixed to 512
dimension.

5.3 Quantitative results

In this work, we present multi-scale scene contextual information for image
captioning task using novel feature fusion network. The proposed multi-scale
feature fusion network generates multi-scale contextual features of an image
which are spatially invariant and semantically rich. Table 1 presents the results
on Flickr30k dataset. From table 1, we can infer that the proposed model
is outperforming the existing state-of-the-art models in all metrics. Notably,
the proposed multi-scale feature fusion network(M − FFNdilated+STN+SSA)
improves the state-of-the art on BLEU-4 from 35.8 to 39.5, and METEOR from
27.8 to 29.2, and CIDEr from 57.4 to 62.1. Further, Table 2 demonstrates the
performance comparison with the other state-of-the-art models on the COCO
dataset.

Table 1 Performance comparison on Flickr30k. B-n, M, R, and C stand for BLEU, Meteor,
Rouge-L, and CIDEr, respectively

Model B-1 B-2 B-3 B-4 M C
DHEDN3 [34] 65.3 46.7 32.9 23.1 19.2 -
SCA-CNN [37] 66.2 46.8 32.5 22.3 19.5 -
SDCD [24] 66.3 43.7 29.2 21.1 - -

Adaptive [36] 67.7 49.4 35.4 25.1 20.4 53.1
SCN+LSTM [44] 73.5 53.0 37.7 26.5 21.8 -

ARL [50] 75.9 60.3 46.5 35.8 27.8 57.4
M− FFNdilated+STN 76.1 60.7 51.4 37.3 27.6 59.1

M− FFNdilated+STN+SSA 76.4 62.4 53.1 39.5 29.2 62.1

On COCO dataset, the proposed M-FFN network is outperforming state-
of-the-art models in all metrics. Mainly, we compare the performance of pro-
posed models with recent encoder-decoder frameworks like deep hierarchical
encoder-decoder framework (DHEDN) [34], compact image captioning model
(COMIC) [53], salience-enhanced images (VIS-SAS) [59], transformer based
captioning models [8,56,8]. In addition, we also included several attention
based and attribute based models like spatial and channel-wise attention (SCA-
CNN) [37], global-local attention (GLA) [52], semantic compositional networks
(SCN) [44].

Moreover, the Table 3 demonstrates the significance of each component
of the proposed approach on COCO captioning dataset. From Table 3, we
can infer that the combination of dilated, STN, and SSA model produces the
significant performance on the COCO dataset. In particular, our proposed
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Table 2 Performance of the proposed models and other state-of-the-art methods on the
COCO dataset

Model BLEU-1 BLEU-4 METEOR ROUGE L CIDEr-D
Deep VS [51] 62.5 23.0 19.5 - -

NIC [32] 66.6 24.6 - - -
S-ATT [35] 70.7 24.3 23.9 - -

SCA-CNN [37] 71.9 31.1 25.0 - -
SCN [44] 72.8 33.0 25.7 - 101.2
GLA [52] 72.5 31.2 24.9 53.3 96.4

COMIC [53] 72.9 32.8 - - 100.1
DHEDN3 [34] 73.1 32.3 25.6 53.7 99.3
Recall [54] 75.8 33.06 24.6 - 103.7
AOA [55] 80.2 38.9 29.2 58.8 129.8
M2T [56] 80.8 39.1 29.2 58.6 131.2
MTumv [8] 81.9 40.7 29.5 59.7 134.1
OSCAR [57] - 41.7 30.6 - 140.0
VinVL [58] - 41.0 31.1 - 140.9

M− FFNdilated+STN+SSA 84.1 41.9 31.6 64.1 141.4

approach with spatial transformer network (STN) alone boosts the perfor-
mance of captioning on Cider-D metric from 83.4 to 118.5 over the baseline
CNN+LSTM approach [35]. Further, the dilated network, dilated network
+ spatial-semantic attention (SSA), and dilated network + STN report the
performance of 120.9, 129.7, and 136.2, respectively, and showing better per-
formance than the recent state-of-the-art approaches like Recall [54], AOA
[55], and M2T [56]. Finally, the combined model of dilated, STN, and SSA
(M-FFN dilated+STN+SSA) demonstrates the superior performance over the
all existing state-of-the-art model in all standard captioning metrics.

Table 3 Performance of the different components on the COCO dataset

Model BLEU-1 BLEU-4 METEOR ROUGE L CIDEr-D
Baseline [35] 71.8 25.0 23.0 50.1 83.4

M− FFNSTN 75.3 32.8 25.3 52.1 118.5
M− FFNdilated 75.7 33.1 25.6 53.4 120.9

M− FFNdilated+SSA 79.4 38.1 28.6 57.9 129.7
M− FFNdilated+STN 81.7 39.3 29.1 60.8 136.2

M− FFNdilated+STN+SSA 84.1 41.9 31.6 64.1 141.4

In brief, various encoding mechanisms have been proposed over the years
to generate the effective caption of an image. For instance, the semantic infor-
mation of an input image is encoded in the NIC [32] model to generate natural
language sentence. Further, the soft and hard attention mechanism based en-
coder framework is proposed in [35] to selectively focus prominent regions of
an image. Gan et al. [44] introduced a tag dependent weight matrix to de-
coding LSTM network to describe the content of an image. Recently, Linghui
et al. [52] presented global and local attention to account for image-level and
object-level features. Xinyu et al. [34] incorporated a hierarchical three-layer
LSTM network to combine visual and textual concepts in order to generate
captions.
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In contrast to the existing works, we propose a novel encoding method that
combines spatially invariant features and multi-scale semantic features through
a feature fusion network. In particular, we employ spatial features to encode
the finer details of small objects and multi-scale features are incorporated to
achieve information of visual scene from various filed of views. However, the
spatial details are sensitive to the spatial transformations such as affine. Hence,
we employ spatial transformer network on spatial features Conv3 and parallel
dilation convolutions are incorporated to extract multi-scale semantic features.

5.4 Qualitative results

In this section, we present the qualitative analysis of the proposed multi-scale
feature fusion network (M-FFN) through the generated captions and attention
maps of test set images. The generated captions and their attention maps
are shown in Figure 6. From the Figure, we can observe that the attention
mechanism is learning to focus on both coarse-grain and fine-grain details
of encoded multi-scale contextual information by generating larger blobs for
coarse-grain information and smaller blobs for fine-grain details. Also, we can
examine that the generated captions are precise and diverse. In particular,
the generated words “stop sign”, “display case”, and “donuts” indicate that
the model is accounting for scene contextual information. And, the words like
“red” and “side of the road” validate the semantic nature of the captions.

From the quantitative and qualitative results, we can observe that the
extracted multi-scale contextual features encode the effective scene contex-
tual information for an image and generate the precise and diverse captions.
Although the proposed model is outperforming the recent works of image cap-
tioning, we can improve our method by probing various attention mechanisms.
Further, we can also take advantage of semantic attributes as in [44], visual
relations, and object regions [14].

6 Conclusion

Recent works on image captioning leverage either attention mechansim with
object features [14,52] or visual attributes [44] with semantic information for
describing the content of an image. However, these methods are limited with
spatial and multi-scale semantic information of the visual scene. To incorporate
multi-scale scene contextual information of an image, we propose a multi-scale
feature fusion (M-FFN) network for image captioning. The proposed multi-
scale feature fusion network actively learns the global features from top layer
(Conv5) of ResNet backbone network and multi-scale semantic features from
the dilated network employed on semantic layer (Conv4). In addition, we in-
corporate spatial features along with multi-scale semantic features to account
for finer details of an image. However, the spatial features are ineffective to en-
code rich spatial information due to the intra-class variability caused by spatial
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Caption: A display case filled with lots of donuts

Caption: a red stop sign sitting on the side of a road

Fig. 6 Illustration of attention maps and generated captions of test images.

transformations. To mitigate this problem, we employ a spatial transformer
network on spatial (Conv3) features. By combining spatial invariance features
and multi-scale semantic features, the proposed model is able to encode the
global, local, and spatial features of an image. Further, the spatial-semantic
attention mechanism allows the caption decoding model to selectively focus
on prominent features of scene contextual information. The effectiveness of
the proposed model is demonstrated on COCO dataset by qualitatively and
quantitatively.
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