Distributed Quadratic Programming Solver

for

Kernel SVM using Genetic Algorithm

Dinesh Singh and C. Krishna Mohan
Visual Learning and Intelligence Group (VIGIL),
Department of Computer Science and Engineering,
Indian Institute of Technology Hyderabad, India
Email: {csl4resch11003, ckm} @iith.ac.in

Abstract—Support vector machine (SVM) is a powerful tool
for classification and regression problems, however, its time and
space complexities make it unsuitable for large datasets. In
this paper, we present GeneticSVM, an evolutionary computing
based distributed approach to find optimal solution of quadratic
programming (QP) for kernel support vector machine. In Ge-
neticSVM, novel encoding method and crossover operation help
in obtaining the better solution. In order to train a SVM from
large datasets, we distribute the training task over the graphics
processing units (GPUs) enabled cluster. It leverages the benefit
of the GPUs for large matrix multiplication. The experiments
show better performance in terms of classification accuracy as
well as computational time on standard datasets like GISETTE,
ADULT, etc.

I. INTRODUCTION

The support vector machine (SVM) has been immensely
successful in classification of diverse inputs from the fields
of genomics, e-commerce, surveillance systems etc. However,
to make intelligent decisions about such data is becoming
increasingly difficult due to easy availability of high volume
data [8], most noticeably in the form of text, images and
videos. Since user preferences and trends keep on changing
fluidly, analysis of such a large volume of data to support
decision making is almost inevitable. Also, the support vector
machine (SVM) has been used for classification and regression
problem in many areas due to its generalization capabilities.
Support vector machine (SVM) is based on statistical learning
theory developed by Vapnik [3]. SVM solves the problem of
over-fitting and makes a generalized model from the least num-
ber of samples. Several implementations of SVM are available,
such as LIBSVM [2], LS-SVM [15], SVMlight [7]. However,
the time and space complexities of SVM increase rapidly with
increase in size of the training data. This makes training SVM
difficult for large scale datasets. The time complexity for a
standard SVM training is O(n?) and the space complexity is
O(n?), where n is the size of training dataset [16]. It is thus
computationally infeasible on very large data sets. The core of
SVM is in solving a quadratic programming (QP), a NP hard
problem which separates support vectors from the rest of the
training data.

Sequential minimal optimization (SMO) is the state of the
art QP solver which is used in LIBSVM, an implementation of
SVM. But this method is sequential, so we can not leverage
the benefit of high performance distributed computing envi-

ronments like high performance cluster (HPC), cloud cluster,
GPU cluster etc. Stochastic gradients decent (SGD) method
can be distributed in order to train on large scale datasets.
But this method works only for linear kernels. There is no
existing true parallel or distributed algorithm to solve the
constrained quadratic programming problem used to separate
the support vectors from the training data for kernel SVM. In
order to improve the training speed of SVM, many approaches
have been proposed in the literature. These approaches can
be categorized into decomposition based approaches and
partitioning based approaches. The decomposition based ap-
proaches efficiently address the space complexity, however,
time complexity remains a challenge. The partitioning based
parallel and distributed SVM methods partition the data into
smaller partitions and train SVM over them independently and
later combine them to produce final support vectors. But, the
partitioning based distributed SVM approaches [14], [1], [6],
[20] are prone to loss of accuracy and high communication
overhead.

In [5], Herrero-Lopez et al. accelerate SVM training by
integrating graphics processing unit (GPU) into MapReduce
clusters. It distributes the matrix multiplication tasks during
the sequential update of the Lagrangian multipliers, however,
it does not allow the desired level of acceleration due to the
sequential nature of the SVM. The evolutionary computing
shows success in order to find a solution near to the optimal so-
lution quickly for NP hard problems and the computations are
easy to perform independently in a distributed environment.
Also, the execution of genetic algorithms can be accelerated by
utilizing the massive parallelization power of the GPU cluster
for training over large datasets. GPU-based parallel genetic
algorithm are also proposed by [11][12][17][18] for various
applications. Several researchers also use genetic algorithm for
parameter tuning, i. e. selecting the best performing parameters
for SVM training [19].

However, in this work, we aim to exploit the evolutionary
computing based optimization ability of the genetic algorithm
to perform distributed computation in finding the optimal
solution for the SVM i. e. support vectors and their respective
a coefficients. Merz et al. [9] use genetic algorithm for binary
quadratic programming (BQP) problem, but this is not applica-
ble for the real valued QP problem in SVM. Herrera et al. [4]
implement genetic algorithm based support vector regression.

It represents the real numbers into binary strings and apply
traditional genetic algorithm. Also, it does not explore the
automatic tuning of the various parameters used in kernel SVM
like regularization parameter C', what is considered an open
research area. In [13], Silva er al. implement least square SVM
(LS-SVM) using genetic algorithm. The disadvantages of these
methods are: 1) Sparsity is not incorporated, due to which all
vectors in the training dataset become support vectors (SVs).
2) Generation of large number of invalid solutions reduce the
computational efficiency. Apart form these limitations, all the
above discussed methods use sequential computation only.

In this paper, we propose an evolutionary computing based
quadratic programming (QP) solver for distributed training
of kernel SVM known as GeneticSVM. The abilities of the
proposed GeneticSVM are:

1) It represents candidate solutions for SVM using se-
quences of random real numbers called random key
encoding, instead of commonly used binary coded string
sequences. The crossover operation is also directly de-
fined on the proposed random key encoding. The random
key encoding reduces the computational time by avoid-
ing decimal to binary and binary to decimal conversions
when using binary encoded genetic algorithm.

2) It generates only valid candidate solutions during initial
population generation and reproduction, instead of a
large number of invalid solutions generated in binary
encoded genetic algorithm.

3) For large matrix multiplication, it leverages the mas-
sively parallel computation power of GPUs.

4) It is suitable for training a SVM classifier from large
datasets, because genetic algorithm can be distributed
to any scale in various distributed computing environ-
ments. It presents two distributed frameworks for GPU
enabled HPC or cloud cluster. First framework reduces
the training time and achieves fast convergence. Second
framework is for training from large datasets.

The rest of the paper is organized as follows: The proposed
GeneticSVM s discussed in section II. Section III describes
the experimental setup, evaluation method and results. We
conclude in section IV with references at the end.

II. PROPOSED GENETICSVM

This section presents the proposed GeneticSVM for the
optimization of quadratic programming (QP) problem for
support vector machine (SVM).

Let D = {(x1,91),., (Xn,yn)} be the dataset with n
feature vectors, x; € R be the d dimensional feature vector
and y; € {—1,+1} be the class label. Then the QP problem
for SVM is to maximize:

J(a)=ale - %aTQa, (1

where ¢;; = y;y; K(x!,x) and o; € « are the Lagrangian
multipliers. A valid solution must satisfy following constraints:

o’y =0, 2

0<; <C, Va; € a. 3)

Here, C is a regularization parameter. Solving Equation (1)
gives o and the value of bias b. All non-zero «; € o are called
support vectors. Let m be the number of support vectors. Then
the decision of a vector x is predicted using support vectors
and their corresponding «; values using the following decision
function:

f(x) = gn<fj aiiK (xF, %) + b>. (4)
i=1

As discussed earlier, existing sequential minimal optimiza-
tion (SMO) solves Equation (1) sequentially and also result
in a solution that is not necessarily optimal. In the subsequent
section, we propose a solver for Equation (1) using genetic
algorithm in order to obtain the better solution. Also, we
proposed a distributed framework which performs distributed
computation over GPU enabled cluster in order to reduce the
time for SVM training.

A. Proposed Genetic Algorithm based QP Solver

Here, we propose a genetic algorithm based solver for
QP in Equation (1). The solution for Equation (1) is the
optimal set of Lagrangian multipliers & = {a;}? 1, ; € R.
As shown in Fig. 1, it generates random solutions i.e. ;
and represents each solution using its n values of «;, called
random key representation. For evaluating the fitness of each
solution, we use objective function in Equation (1) as fitness
function. Reproduction operations are performed directly on
the random keys of two candidate solution in order to generate
new solutions. The details of the operations performed in
proposed genetic algorithm based QP solver for searching the
best solution is given here. As shown in Fig. 1-(A), the steps
in a genetic algorithm include:

1) Encoding: The proposed approach uses random key
encoding in order to represent the candidate solutions.
The candidate solutions are the positive real valued
o € R"™, where n is the number of vectors in the
training set. The encoding should satisfy the constraints
given in Equation (2) & (3). The Algorithm 1 generates
a € R"™ which satisfies both the constraints. Let n,
be the number of positive class vectors and n, be
the negative class vectors. As shown in Fig. 1-(B), it
generates two random vectors «, and o, of size n,
and n,, with sparsity s, and s, respectively. Hence,
output vectors oy, and o, have only s, and s, non
zero values, respectively. In order to satisfy constraints
given in Equation (2) & (3), the vector o), and a,
are normalized with factor f, and f,, respectively as

follows:
nxC
ap < ap X fp, Where fp < m, (5)
x C
a” +— a” x f,; where f, «+ i (6)

4xeTan’

Representation: Random Key Encoding

1 s 1 s
Generate Initial Population R R R R
v 1 s 1 s
Evaluate |« New Generation |« 1 1 1 1
1 np 1 (np+1) nn (n)
R (o] R (o] R R
Selection »| Reproduction
1 n
al a2 i an
/ Best Solution /
A ®)
Reproduction: Random Key Crossover Operation
1 n
al a2 ai an
1 / m o
all] ol alnp 1 np 1 (np+1) nn (n) all] ol2 alnn
1 s T~ | o1 a1z alnp a11| a2 alnn |4« 1 s
1 1 1 np 1 (np+1) nn (n) | |
1 np) a2l|] a2 aznp a2l] a2 aznn \ 1 (np+1) nn (n)
a2l a2 az2np a2l a2 aznn
\ - ; /
al a2 ai an
©)

Fig. 1. GeneticSVM operations. (A) The flow diagram of the steps in genetic algorithm. (B) The process of the solutions representation using random key
encoding. (C) The process of crossover operation for reproduction of new candidate solutions.

2)

3)

4)

Then the final solution is represented by o as follows:

)

Initial Population: We generate initial population A of
size m using Algorithm 2.

A —{a; }gmzl

a+— [P a”].

®)

Evaluation: In order to evaluate the fitness of a solution
a, the objective function J () in Equation (1) is used as
the fitness function. The fitness value f; for 4" solution
«; is given by:

fi= aJTe—

€))

Equation (9) gives the fitness of single candidate solution
only. In order to utilize the GPUs efficiently, we can
calculate the fitness of all m, o; € A as:

1
ia;rQaj.

feAxe—%((AxQ).A)xe. (10)

Selection: For selection, roulette wheel selection is used,
however other methods such as rank selection can also
be used. The fitness value of each ; € A is used to

5)

associate a probability of selection. Let f; be the fitness
of a;, then its probability of being selected is given by:

i

R

Pj (1)

Reproduction: For reproduction, we use only crossover.
The crossover operation is a random r-site crossover in
which two parents generate four children. As shown in
Fig. 1-(B), it randomly selects two solutions c; and oy
from mating pool and separates them into o, af, ab,
and . Random key crossover is applied separately
on pairs i.e. of, ab and af, af. The random key
crossover generates random integer indices k¥ and k"
in the range 1 to ny, and 1 to n,, respectively. And the
values of o and o are exchanged with o} and af at
the respective indices in k” and k". However, o, ab,
af, af may violate the constraint in Equation (2) due
to exchange of values. So, in order to meet the constraint
in Equation (2), the error i.e. the difference in the sum
of values exchanged is calculated and adjusted. Then,
we get the updated values of o, ab, af, af which

Algorithm 1 Random Key Encoding genAlpha(ny, ny, d)

Require: n, :Number of positive class samples in training

3fn<*

dataset.
n, :Number of negative class samples in training dataset.
d :Number of dimensions of sample vector.

PN A Nyt Ny

C < rand_int(d,1); {random integer in the range 1 to
a}

sp — rand_int(ny, 1);

r? « rand_int(ny, sp); {s, random integers in the range
1to ny,}

ol « |N(sp x 1)|;

fp < %9

aP — af x fp;

Sp, <= rand_int(ny, 1);

r" <« rand_int(ny, sp);

a™ «— |N(s, x 1)];
nxC .

4xeTam?

a” — a” X fp;

Do+ [af, o

return o;

Algorithm 2 Initial Population Generation

Require: m :Size of the initial population

AN o

n, :Number of positive class samples in training dataset.
n,, :Number of negative class samples in training dataset.
d : Number of dimensions of sample vector.

Initialize A[m];

for j =1 — m{ in parallel} do
a; < genAlpha(n,, ny,, d);{using Algorithm-1}
Alj] < ay;

end for

return A;

will result into four new solutions:

C1 = [aﬁ)va?]’ (12)
C2 = [azl)vag]v (13)
c3 = [, o], (14)
c1 = [ay, 3], (15)

The complete procedure of the new solution generation
using random r-site crossover is given in Algorithm 3.

6) Elitism: Lets us consider the initial population size

m = 100. Then, the population at (g + 1)** generation
retains 4-best solutions from g*" generation. And 92 new
solutions are reproduced using 23(= 92/4) crossover
operations using Equation (3) and the remaining 4
are the new solutions generated using Algorithm 1 as
generated in the initial population.

The proposed GeneticSVM solves the QP problem in Equation
(1) with results comparable to SMO. However, time taken

Algorithm 3 Random r-Site Crossover

Require: o :First Parent.

[o N

=)}

28:

30:
31:

33:
34:

36:
37:
38:
39:
40:
41:
42:
43:

E 3
. if € > 0 then

o :Second Parent.
np :Number of positive class samples in training dataset.
n, :Number of negative class samples in training dataset.

1 rand_int(ny, 1);
. kP rand_int(ny,r);

p

: ag — {O‘gi}%:l;
sag < {ag bl
:t] «— {af;}

:th < {ad)T

k’!‘ .
i=kP?
kP

=KD’

. p pr .
Aol —
. p " pPr .
: {%kf i

T 4P Typ
e ti—e t;

l < rand_int(n,p, 1)
ay, < af; Fe
while ¢ # 0 do
l < rand_int(n,,1)
if ozgl > € then
ofy e afy - &

e =0;
else
ok, — 0;
21 .
€4 €—ay,
end if
end while
: else
€+ e

l < rand_int(n,,1)
a4 oy + e
while ¢ # 0 do
l + rand_int(ny,1)
if o, > € then
afy < ofy — 6
€ =0;
else
€ €— ol
o, «0;
end if
end while
end if
Similarly calculate a7 and .
c1 = [af, atl;
¢z = [af, a5];
cs = o, af);
Cq = [agv asl;
return {cj,cCo,C3,Cq};

on a single processor is too high. In order to reduce the
training time, we perform distributed computations in cloud
environment as presented in the next section.

Global Best Solution

Master VM
Global Pool

4
Local Best Solution i Local Best Solution
Local Best|Solution
A

Worker GPU VM-1 Worker GPU VM-k Worker GPU VM-N
Local Pool Local Pool Local Pool

Fig. 2. Proposed architecture of Distributed GeneticSVM

B. Distributed Computing in Cloud Environment

The proposed genetic algorithm based QP solver is able
to get the best solution for Equation (1) but the time taken
is too high. However, unlike sequential minimal optimization
(SMO), the proposed solver is easy to distribute. For Ge-
neticSVM, we can utilize distributed environments like GPU
enabled HPC or cloud clusters etc. Here, we present two
distributed frameworks for GeneticSVM over the GPU enabled
cloud cluster. The proposed frameworks work according to
the available resources and size of the dataset. The first
distributed GeneticSVM framework, run multiple instances of
the algorithm and share the best solution among each others
in order to achieve fast convergence. The second framework
further distribute the task of a single instance of the algorithm
for a large dataset.

1) Distributed GeneticSVM: The first framework is appli-
cable when one virtual machine (VM) is able to store the data
in physical memory but training time is too high. Here, we are
considering availability of virtual resources provisioned over
cloud environment. As shown in Fig. 2, we launch multiple
instance of the GPU enabled virtual machines (VMs). One VM
acts as master VM and all others act as worker VMs. Here, we
maintain a global pool, A¢ = {a;)}+_; at master VM and a
local pool A} = {o;}7, at k'™ worker VM, k = 1,2,..., N.
The kernel matrix Q is copied to all the worker VMs. Each
worker VM generates the initial population, then do the fitness
evaluation and send the best solution to the master VM. Master
VM collects all the local solutions in the global pool A, then
it selects the global solution from the local solutions, and then
broadcasts the best solution to all worker VMs. Further, each
worker VM prepares the next generation which consists of
global best solution, local best solution (if not winner worker
VM), reproduced children solutions from previous generation
solutions, and randomly generated solutions. This process is
repeated until convergence. The fitness value (f) is calculated
using Equation 10. Also, in this process, the N worker VMs
send only best solution, thus, total N messages are passed
over the network after each generation. This leads to very low
communication which is of the order of O(N). The sharing
of best solutions leads to fast convergence.

2) Distributed GeneticSVM for Large Dataset: The first
distributed framework i.e. Distributed GeneticSVM is not

applicable for large dataset. Because the size of kernel matrix
increases quadratically O(n?) with an increase in dataset size
n. Thus, for a large dataset it is not an efficient way to store
kernel matrix in one worker VM and execute the task. Thus in
this framework for distributed GeneticSVM, we distribute the
kernel matrix Q into L sub-worker VMs with GPU support,
while worker VMs do not require GPU support as shown in
Fig. 3. Each sub-worker XM with identifier [= 1,2,..., L
L

contains Q' = {{gi;}7_1} * (_.).. a part of kernel matrix Q,
J

having size n x 7. The partial fitness f! is calculated at each
sub-worker machine as follow:

P+ AxQ, (16)
in
Al Haibt) oo (17)
P+ PAl (18)
1
! (A ><e+§P><e). (19)
Finally, the fitness value f is calculated as:
L
fe) (20)
=1

III. EXPERIMENTS AND RESULTS

The genetic algorithm is implemented in C/C++, CUDA,
and OpenMPI over a GPU cluster running Ubuntu 14.04. The
cluster contains two machines with specifications: 1) First
machine has 2 Intel Xeon processors with 12 core each, 64GB
physical memory and 6 Nvidia Tesla K20Xm GPUs with 5GB
device memory each. 2) Second machine has 2 Intel Xeon
processors with 24 core each, 128GB physical memory, 2
Nvidia Tesla K20c GPUs with 6GB device memory each.
The large matrix multiplications are accelerated using GPUs.
We have also successfully tested GeneticSVM on HPC with
512 nodes and on the Amazon Elastic Compute Cloud (EC2)
using StarCluster [10]. StarCluster is a tool for dynamically
creating, managing cluster on Amazon EC2 for testing MPI
programs. Table I provides the details of the datasets used in
the experiments.

TABLE I
DETAILS OF DATASETS USED TO EVALUATE THE PERFORMANCE OF
GENETICSVM
Dataset Dimensions | Training Size | Test Size
GISETTE 5000 6000 1000
ADULT (A1A) 123 1605 30956
ADULT (A2A) 123 2265 30296
ADULT (A3A) 123 3185 29376
ADULT (A4A) 123 4781 27780
ADULT (A5A) 123 6414 26147
ADULT (A6A) 123 11220 21341
ADULT (A7A) 123 16100 16461
ADULT (A8A) 123 22696 9865
ADULT (A9A) 123 32561 16281
MUSHROOMS 112 5000 3124
SVMGUIDEI 4 3089 4000

/ i
\ 4

Local Best Solution

Worker VM-1

Local Pool

o~

s

Global Best Solution

Master VM
Global Pool

Local Bs st Solution

Worker VM-k
Local Pool

N

.

Local Best Solution

Worker VM-N
Local Pool

BN

Sub-Worker || Sub-Worker || Sub-Worker Sub-Worker || Sub-Worker || Sub-Worker Sub-Worker || Sub-Worker || Sub-Worker
GPU VM-1 GPU VM-I GPU VM-L GPU VM-1 GPU VM-| GPU VM-L GPU VM-1 GPU VM-I GPU VM-L
Fig. 3. Proposed architecture of distributed GeneticSVM for large dataset
96 96
95
95.5}]
94+
95 E Best Fitness
— ~ 93) 1
S 9 — Average Fitness
3945} 1 &9 1
o g
3 3 o1 J
g o4 1 8
c c 90 B
2 S
g 93.5 1 § 89 E
s s
93} | 88 b
87 i
9251]
86 1
92 L L L L 85 Il Il Il Il Il Il Il Il Il
0 20 40 60 80 100 0 250 500 750 1000 1250 1500 1750 2000 22502400
Population (Decending order of Fithess) Number of Generations
(A) (B)

Fig. 4. Performance of classification for GeneticSVM on the GISETTE dataset after 2400 epoch. (A) All the candidate solution in the pool shows the high
classification accuracy with a very low difference in between best and wrest solution. (B) Difference of best and average fitness reduces over the generations.

The results in Fig. 4-(A) show the fitness values of can-
didates in the pool after 2400 epochs and the results in
Fig. 4-(B) reflect the improvement to the fitness index over
the epochs. The presented experiment is conducted on the
GISETTE dataset of OCR published during a NIPS challenge.
The results show that the classification performance of the
proposed approach is very close to sequential SVM. The
results in Table II show the good classification ability of the
proposed algorithm with a negligible loss of accuracy which
can be further reduced by running algorithm for more number
of generations. Fig. 5 shows the performance of classification
while running the GeneticSVM algorithm multiple times. The
results show very low standard deviations when running 10
times. Also, Fig. 5 shows that the proposed approach obtains
the significant improvements in first few hundred iterations
only, which shows the suitability of the encoding method and

crossover operations used for generating new solutions. Fig. 6
shows the time taken by 100 worker VMs. Finally, when
running the complete pipeline of the algorithm on various
datasets, the GeneticSVM algorithm performs approximately
10-20 times faster than the LIBSVM as shown in Table III.

The proposed GeneticSVM performs better than existing
partitioning based distributed SVMs approaches in terms of
classification accuracy and time taken in training a SVM
model. The proposed approach successfully achieves a com-
parable accuracy to sequential SVM for GISETTE dataset.
Along with improvement in accuracy, proposed approach also
performs approximately 3 times faster than the approach by
You et al. [20]. Also, it can be observed that the loss of accu-
racy is less than 0.9% on other datasets, which demonstrates
the efficacy of the proposed approach.

100 T T T T

920

85

80

75

70

65

60

Performance of Classification (%)

55

50 | | |
0 100 200 300 400

1 1 1 1
500 600 700 800 900 1000

Number of Generations

Fig. 5. Performance of genetic algorithm based optimization of QP problem for 10 runs using population size 1000 and pool size 2000 at each slave process

and using population size 100 and pool size 1000 at master process.

Time Taken for 10 Generation (second)

0 10 20 30 40

50 60 70 80 90 100

Node ID

Fig. 6. Time taken by each process for 10 generations, each for population size 1000 and pool size 2000 at work VMs.

TABLE II
PERFORMANCE OF CLASSIFICATION (%) OF THE GENETICSVM AND
COMPARISON WITH SMO USING LIBSVM

TABLE III
TRAINING TIME (SECONDS) OF THE GENETICSVM AND COMPARISON
WITH SMO USING LIBSVM

IV. CONCLUSION

The partitioning based distributed SVMs have generally
proven to be faster than sequential SVMs on large datasets.
However, classification performance still lags behind. In the
proposed GeneticSVM, we aimed at providing a distributed
SVM approach which retains or improves the classification

DataSet SMO GeneticSVM Accuracy DataSet SMO GeneticSVM (Mean+Var.) | Scaling
Used Accuracy (%) Loss (%) Accuracy (%) Used (Seconds) (Seconds)

GISETTE 97.60 97.60 0.0 GISETTE 214 9.2091+1.3368 ~ 20%
ADULT (A1A) 83.59 83.19 -0.4 ADULT (A7A) 11.84 0.8013 4+ 0.1307 ~ 15X
ADULT (A2A) 83.98 83.28 -0.7 ADULT (A8A) 22.97 1.4556 + 0.2023 ~ 15X
ADULT (A3A) 83.84 83.54 -0.3 ADULT (A9A) 45.85 2.5473 £ 0.7359 ~ 18x%
ADULT (A4A) 83.96 83.26 -0.7

ADULT (A5A) 84.17 83.37 -0.8

ADULT (A6A) 84.17 83.27 -0.9

ADULT (A7A) 84.58 83.78 0.8 performance of sequential SVM while having the compu-
ADULT (A8A) 85.01 84.31 0.7 tational time gains as of distributed approachs on a large
ADULT (A9A) 84.82 84.52 0.3 dataset. The GeneticSVM shows success in order to find the
MUSHROOMS 97.09 96.39 -0.7 : i X K R
SVMGUIDEI 66.93 6633 06 better solution quickly also the computations are efficiently

distributed over GPU cloud cluster to leverage the benefit of
the GPUs for large matrix multiplication. The experiments
show better performance in terms of classification accuracy
as well as computational time.

ACKNOWLEDGMENT

Supported by Microsoft Research India Travel Grant

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

REFERENCES

N. K. Alham, M. Li, S. Hammoud, Y. Liu, and M. Ponraj, “A distributed
SVM for image annotation,” in Proc. of Int. Conf. on Fuzzy Systems and
Knowledge Discovery (FSKD), Yantai, Shandong, 10-12 Aug 2010, pp.
2983-2987.

C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support
vector machines,” ACM Trans. on Intelligent Systems and
Technology, vol. 2, pp. 1-27, 2011, software available at
http://www.csie.ntu.edu.tw/ cjlin/libsvm.

C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning,
vol. 20, no. 3, pp. 273-297, 1995.

O. Herrera and A. Kuri, “An approach to support vector regression with
genetic algorithms,” in Proc. of the Fifth Mexican Int. Conf. on Artificial
Intelligence, MICAI, 2006, pp. 178-186.

S. Herrero-Lopez, “Accelerating SVMs by integrating GPUs into
MapReduce clusters,” in Proc. of IEEE Int. Conf. on Systems, Man and
Cybernetics, 2011, pp. 1298-1305.

C.-J. Hsieh, S. Si, and I. Dhillon, “A Divide-and-Conquer Solver for
Kernel Support Vector Machines,” in Proc. of Int. Conf. on Machine
Learning, vol. 32, no. 1, 2014, pp. 566-574.

T. Joachims, “Making large-Scale {SVM} Learning Practical,” in Ad-
vances in Kernel Methods - Support Vector Learning, B. Scholkopf,
C. Burges, and A. Smola, Eds. Cambridge, MA: MIT Press, 1999,
ch. 11, pp. 169-184.

X. Ke, R. Jin, X. Xie, and J. Cao, “A Distributed SVM Method based
on the Iterative MapReduce,” in Proc. of IEEE Int. Conf. on Semantic
Computing (ICSC), no. 4, 2015, pp. 7-10.

P. Merz and B. Freisleben, “Genetic algorithms for binary quadratic
programming,” in Proc. of the Genetic and Evolutionary Computation
Conference, 1999, pp. 417-424.
MIT, “StarCluster.”
http://star.mit.edu/cluster/index.html

[Online]. Available:

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

A. Munawar, M. Wahib, M. Munetomo, and K. Akama, “Advanced
genetic algorithm to solve MINLP problems over GPU,” in Proc. of
IEEE Congress of Evolutionary Computation (IEEE CEC), 2011, pp.
318-325.

M. Oiso, T. Yasuda, K. Ohkura, and Y. Matumura, “Accelerating steady-
state genetic algorithms based on CUDA architecture,” in Proc. of IEEE
Congress of Evolutionary Computation (IEEE CEC), 2011, pp. 687-692.
J. P. Silva and A. R. d. R. Neto, “Sparse Least Squares Support
Vector Machines via Genetic Algorithms,” in BRICS Congress on
Computational Intelligence, 2013, pp. 248-253. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6855857
Z. Sun and G. Fox, “Study on Parallel SVM Based on MapReduce,” in
Proc. of Int. Conf. on Parallel and Distributed Processing Techniques
and Applications, 2012, pp. 16-19.

J. A. K. Suykens and J. Vandewalle, “Least Squares Support Vector
Machine Classifiers,” Neural Processing Letters, vol. 9, no. 3, pp. 293—
300, 1999.

I. W. Tsang, J. T. Kwok, and P.-M. Cheung, “Core VectorMachines: Fast
SVMTraining on Very Large Data Sets,” Journal of Machine Learning
Research, vol. 33, no. 2, pp. 211-220, 2008.

M. Wahib, A. Munawar, M. Munetomo, and K. Akama, “Optimization
of Parallel Genetic Algorithms for nVidia GPUSs,” in Proc. of IEEE
Congress of Evolutionary Computation (IEEE CEC), 2011, pp. 803—
811.

K. Wang and Z. Shen, “A GPU-Based Parallel Genetic Algorithm for
Generating Daily Activity Plans,” IEEE Trans. on Intelligent Transporta-
tion Systems, vol. 13, no. 3, pp. 1474-1480, 2012.

C.-H. Wu, Y. Ken, and T. Huang, “Patent classification system using
a new hybrid genetic algorithm support vector machine,” Applied Soft
Computing, vol. 10, no. 4, pp. 1164-1177, 2010.

Y. You, J. Demmel, K. Czechowski, L. Song, and R. Vuduc, “CA-SVM:
Communication-Avoiding Support Vector Machines on Distributed Sys-
tems,” in Proc. of IEEE International Parallel and Distributed Process-
ing Symposium, Hyderabad, India, 2015, pp. 847-859.

