
Efficient Clustering Approach using Incremental and Hierarchical Clustering
Methods

M. Srinivas and C. Krishna Mohan

Abstract−There are many clustering methods available and
each of them may give a different grouping of datasets. It is
proven that hybrid clustering algorithms give efficient results
over the other algorithms. In this paper, we propose an efficient
hybrid clustering algorithm by combining the features of
leader’s method which is an incremental clustering method and
complete linkage algorithm which is a hierarchical clustering
procedure. It is most common to find the dissimilarity between
two clusters as the distance between their centorids or the
distance between two closest (or farthest) data points. However,
these measures may not give efficient clustering results in all
cases. So, we propose a new similarity measure, known as
cohesion to find the intercluster distance. By using this measure
of cohesion, a two level clustering algorithm is proposed, which
runs in linear time to the size of input data set. We demonstrate
the effectiveness of the clustering procedure by using the
leader’s algorithm and cohesion similarity measure. The
proposed method works in two steps: In the first step, the
features of incremental and hierarchical clustering methods are
combined to partition the input data set into several smaller
subclusters. In the second step, subclusters are merged
continuously based on cohesion similarity measure. We
demonstrate the effectiveness of this framework for the web
mining applications.

I. INTRODUCTION

One drawback of the partitional clustering is the difficulty in
determining the optimal number of clusters(k). Incremental
clustering is an efficient method and runs in linear time to
the size of input data set. In most related studies, the
dissimilarity between two clusters is defined as the distance
between their centroids or the distance between two closest
data points. Hierarchical clustering algorithms create a
hierarchical decomposition of data set based on some
criterion. The decomposition can be described as a
dendrogram that represents a series of nested partitions. A
partition is obtained by cutting the dendrogram at some
desired level. Hierarchical algorithms do not suffer from the
problem of choosing a pre-specified number for the output
clusters [3].

M.Srinivas with the Indian Institute of Technology, Hyderabad-502025,
India (phone: +91 9989449091; email: sreeconf@gmail.com).
C. Krishna Mohan with the Indian Institute of Technology, Hyderabad-
502205, India (email: ckm@iith.ac.in).

Hierarchical clustering algorithms can differ in their
operation. Agglomerative clustering methods start with each
object in a distinct cluster and successively merge them to
larger clusters until a stopping criterion is satisfied.
Alternatively, divisive algorithms begin with all objects in a
single cluster and perform splitting until a stopping criterion
is met. Both agglomerative and divisive hierarchical
algorithms are static in the sense they never undo what was
done previously, which means that objects which are
committed to a cluster in the early stages, cannot move to
another cluster. In other words, once a cluster is split or two
clusters are merged, the split objects will never come
together in one cluster or the merged objects will be never in
the same cluster, no matter whether the splitting or the
merging is the correct action or not. But in practice, some
splitting or merging actions may not be correct and there is a
need to rearrange the partition. This problem is a cause for
inaccuracy in clustering, especially for poorly separated data
sets.

In this paper, we present a hybrid clustering
algorithm namely, Leaders complete linkage algorithm
(LCL) that combines the advantages of hierarchical
clustering and incremental clustering techniques. Instead of
rearranging all objects like what partitional algorithms
usually do, in each iteration of the clustering, some objects
but all are moved from one cluster to another by the way of
splitting a cluster or merging two clusters. It can start with a
single cluster containing all objects or start with each object
in a distinct cluster. At each step during the clustering, the
quality of the current partition is examined as well as the
quality of the partition after splitting one cluster or merging
two clusters. If the quality of the partition is improved after
the splitting or the merging, then a further splitting or
merging will be performed. Otherwise, the clustering will
terminate and the current partition is the final clustering
result. The idea behind the mix of splitting and merging is to
allow amendment to the previous clustering result so that
high quality clustering can be achieved. The amount of
information available on the Web has been increasing
dramatically in recent years. At present the main problem
that the Web users face with is no longer the lack of
information, but the way of finding information that can
meet their specific needs. Recently, many researchers have

978-1-4244-8126-2/10/$26.00 ©2010 IEEE

Authorized licensed use limited to: Indian Institute of Technology Hyderabad. Downloaded on May 18,2022 at 06:42:32 UTC from IEEE Xplore. Restrictions apply.

focused their study on applying data mining techniques to
Web server logs for automatically generating user navigation
patterns such as popular navigation sessions, item
association rules, page clusters, and user clusters [l -7], [9].
A variety of knowledge discovery techniques have been
applied to obtain navigation patterns. Clustering is one of the
popularly used techniques for grouping user navigation
sessions or Web pages. The LCL algorithm proposed here
has been experimentally tested on a set of real Web server
log data to find Web page clusters. Hybrid clustering
methods are used to overcome the misclassification problem
with large data sets. The basic technique is to first find
suitable prototypes from the large data set and then apply the
clustering method using only the prototypes.

 Fig.1. Overall System Design

Fig. 1 shows the overall system design of text
document clustering process. In this process, documents are
taken as the input. These input documents are analyzed or
preprocessed by the document analyzer. In this analysis
phase, features of the each document are selected and
represented in terms of frequency matrix. Further, this
frequency matrix is converted into vector representation and
the vectors are normalized. Then a similarity measure is
applied on each document and a similarity matrix is
constructed. Finally, the text documents can be clustered
based on a similarity measure.

The rest of the paper is organized as follows.
Section 2 introduces the hybrid clustering algorithm. Section
3 presents the experimental results of applying the hybrid
clustering algorithm to Web page clustering. Comparisons to
related work are also provided in this section. Finally,
Section 4 summarizes the paper.

II. HYBRID CLUSTERING ALGORITHM

A. Leader Clustering Algorithm
Leader clustering algorithm [2] is a single pass algorithm

and very efficient in terms of computational requirements.

When leader algorithm is applied on the data set, it chooses
one data object and assumes it as a first leader. Then, it
chooses all the data objects one by one and compares it with
the leader. The comparison is based on the Euclidean
distance between leader and the current data object. Whether
to put the current data object within the cluster lead by that
particular leader or make that data object as a new leader is
decided based on the threshold value. This process will
continue until the entire data set has been processed.
Following is the leader algorithm:
Algorithm: Leader Clustering
Input: Data set, Threshold value (Th).
Output: Number of Clusters (k).
Initialize a leader, add it to the leader list and
set leader counter L =1
Do for all patterns i =2 to N
{
Calculate the distance between pattern i and all leaders
Find the nearest leader
If (distance between pattern i and nearest leader<Threshold)
then
 {
 Assign pattern i to the nearest leader
 Label the cluster number
 Add pattern i to member list of this cluster
 Increment member count of this cluster
 }
else
 {
 Add it to the leader list
 Increment leader counter L = L + 1
 }
}

For a given threshold value (Th), leaders method
[2] works as follows. It maintains a set of leaders L, which is
incrementally built. For each pattern x in dataset (D) if there
is a leader l Є L such that distance between x and l is less
than Th, then x is assigned to the cluster represented by l.
Note that even if there are many such leaders, only one (the
first encountered one) is choosen. Because of this the cluster
represented by a leader is of semi-spherical shape. If there is
no such leader then x itself becomes a new leader and is
added to L. Along with each leader, a count indicating
number of patterns that are grouped under the leader is also
stored.

Leader clustering algorithm scans the input data set
only once and gives the result very quickly. The advantage
with leaders clustering algorithm is that there is no need to

Document
Similarity

Calculation

Document
Clustering

Clusters

Document
analysis

Frequency matrix
Representation

Vector
Representation

Vector
Normalization

Authorized licensed use limited to: Indian Institute of Technology Hyderabad. Downloaded on May 18,2022 at 06:42:32 UTC from IEEE Xplore. Restrictions apply.

know the number of clusters in advance. Leaders clustering
algorithm finds appropriate number of clusters based on the
threshold value (Th). The leader algorithm requires only
O(n) time to get the clusters from the data set with n number
of data objects. The drawbacks with this algorithm are: (1)
Threshold value must be very appropriate, (2) output
depends on the order in which data is presented, and (3)
arbitrary shape of the cluster may not be possible to
determine. Leader’s algorithm produces only the circular
clusters. Also, the result of leader clustering algorithm is
highly affected by the presence of noise.

B. Hierarchical Clustering Algorithms
As its name implies, a hierarchical clustering algorithm

establishes a hierarchical structure as the clustering result.
Owing to their good quality of clustering results, hierarchical
algorithms are widely used especially in document clustering
and classification. The outline of a general hierarchical
clustering algorithm is given below:

Hierarchical Clustering Algorithm:

1. Initially, each data point forms a cluster by itself.
2. Repetitively merge the two closest clusters.
3. Output the hierarchical structure that is constructed.

 Most existing hierarchical clustering algorithms are
variations of the single-link and complete-link algorithms.
Both algorithms require time complexity of O(n2 log n).
Where n is the size of the input data set. These algorithms
differ in the way they characterize the similarity between a
pair of clusters. A single-link clustering algorithm differs
from a complete-link clustering algorithm in the intercluster
distance measure. The single-link algorithm uses the
distance between the two closest points of the two clusters as
the intercluster distance, i.e,

 dist (Ci,Cj)=min{dist(oi,oj)| oiЄCi, ojЄCj)}, (1)

 where as the complete-link algorithm uses the distance
of two farthest points as the intercluster distance, i.e,

 dist (Ci, Cj) =max{dist(oi, oj)| oi Є Ci, oj ЄCj)}. (2)

 In either case, two clusters are merged to form a
larger cluster based on minimum distance criteria. The
complete-link algorithm produces tightly bound or compact
clusters. The single-link algorithm, by contrast, suffers from
a chaining effect. It has a tendency to produce clusters that
are elongated. The clusters obtained by the complete-link
algorithm are more compact than those obtained by the
single-link algorithm. From a pragmatic viewpoint, it has

been observed that the complete-link algorithm produces
more useful hierarchies in many applications than the single-
link algorithm.

C. Proposed Approach
 Several clustering methods have been proposed to

combine the features of two different clustering algorithms.
In general, these algorithms first partition the input data set
into m subclusters and then construct a hierarchical structure
based on these m subclusters. In this paper we propose a new
hybrid clustering algorithm known as leaders complete-
linkage (LCL) to merge leaders algorithm and hierarchical
clustering algorithm called complete-linkage. In LCL
clustering, we first apply Leaders algorithm to produce sub-
clusters represented by leaders. Next complete-linkage
algorithm is applied on each leader to produce final arbitrary
shaped clusters.

(i). Similarity Measure between Subclusters
In this paper, we propose a new measure of similarity
between two subclusters known as cohesion which is
intrinsically different from other prior measures. Cohesion
[8] is more appropriate for an intercluster similarity measure
because it does not judge the similarity of two subclusters by
considering only few data points. Rather, the cohesion
measure takes the distributions of the two clusters into
account in order to find the similarity.

 As shown in Fig. 2, the distance between the
centroids of the two clusters in Fig. 2a and that of the two
clusters in Fig. 2b are the same. The two clusters shown in
Fig. 2b are more inclined to be merged together. So, we
propose a new similarity measure namely, cohesion based on
the joinability of two clusters, referring to the existence of a
data point. Conceptually, joinability is the merging
inclination of two clusters according to the existence of a
shared data point. Thus, joinability is expected to have the
following properties: (1) Data points located closer to the
boundary of the two clusters are more important, and (2) The
merging inclination should not be determined by only a few
points, i.e., the value of joinability should not vary
dramatically.

Fig.2. Illustration for subclusters that have different cohesion values. (a)
Two clusters with smaller cohesion. (b) Two clusters with greater cohesion.

Authorized licensed use limited to: Indian Institute of Technology Hyderabad. Downloaded on May 18,2022 at 06:42:32 UTC from IEEE Xplore. Restrictions apply.

Formally, we have the following definition for joinability:

Definition 1. The joinability of the two clusters (Ci and Cj)
referring to the existence of the point p with location v is
defined as:
 Join (p, Ci, Cj) = min (fi (v), fj(v)), (3)

 where fi and fj are the probability density functions
(pdfs) of the distributions in Cluster Ci and Cj, respectively.
An illustration of joinability is shown in Fig. 3.

 Fig. 3. An illustration for the meaning of joinability

The joinabilities of the data points at v1 and v2 are j1 and j2,
respectively. With the notion of joinability, the definition of
cohesion of two clusters is given below:

Definition 2. The cohesion of two clusters (Ci and Cj) is
defined as

 chs (Ci, Cj) = ,

(, ,)

| | | |
i j

i j

p C C

i j

join p C C

C C
∈

+

∑
, (4)

 where |Ci| is the size of Cluster Ci.
 In general, the probability density function of f(v)

can be evaluated in constant time. Thus, the time complexity
of the computation of cohesion of two clusters (Ci and Cj) is
linear to the size of the two clusters, i.e., O(|Ci| + |Cj|).

(ii). Algorithm LCL

 Now, we describe the proposed Leaders complete-
linkage clustering (LCL) algorithm as follows:

Input: Input data set, size of the data set n, number of
subclusters m, and desired number of clusters k.

Output: Hierarchical structure of the k clusters.

1. Apply Leaders Algorithm on the input data set to obtain m
subclusters by using appropriate threshold value.

2. Apply the complete-link clustering algorithm on the m
subclusters produced in Step 1 with cohesion as the
similarity measure and stop when k clusters are obtained.

 Algorithm LCL is a two-phase clustering algorithm.
In the first phase, it adopts the Leader algorithm to divide
the input data set into m subclusters. At the beginning of
phase 2, it obtains the cohesions of these m subclusters
produced in the first phase. Then, a complete-link clustering
algorithm based on cohesion to obtain the final clusters is
performed.

 In algorithm LCL, the parameter m, i.e., the number
of subclusters, is the only additional parameter. The desired
clustering results can be obtained by adjusting the value of
m. It is clear that the value of parameter m falls in the range
of (k, n). When m = k, algorithm LCL is degenerated to the
leader clustering algorithm. When m approaches n, this
algorithm is reduced to the complete-linkage algorithm. It is
known that the leader algorithm is good for obtaining
clusters of circular shape, while the complete-link algorithm
is able to find clusters of any shape. With prior knowledge,
we can make the clustering algorithm adapt to various inputs
by adjusting the parameter m. The algorithm LCL leads to a
better clustering results than those by most prior methods,
showing not only the generality but also the advantage of
algorithm LCL over the leader and complete-link methods.

(iii). Time and Space Complexities
In step 1, Leaders algorithm takes time O(n) to apply the
Leaders algorithm on the input data set to obtain m
subclusters. Then, at the beginning of step 2, similarity
measure between any two subclusters based cohesion is
determined. Recall that the time complexity of each
evaluation is linear to the size of the clusters. The complete-
link clustering algorithm is applied on m subclusters and has
time in the order of O(m2 log m). The time complexity of
algorithm LCL is therefore O(n) + O(m2 logm) = O(n + m2
log m). In the first step, we only need the memory space to
store input data set and group relationship of subclusters,
which requires the memory space of O(n2). In the second
step, space is required for the complete-link clustering
algorithm. Thus, the space complexity is O(m2). Since m is
always smaller than n, the total space complexity of
algorithm LCL is O(n2).

III. EXPERIMENTAL RESULTS

 In this section, we first describe the data used in the
experiments and then the methods to evaluate the
performance of the algorithm. Finally, the results obtained in

Authorized licensed use limited to: Indian Institute of Technology Hyderabad. Downloaded on May 18,2022 at 06:42:32 UTC from IEEE Xplore. Restrictions apply.

the experimental studies are discussed. The experiments
were conducted using four web server log files, 991001.gz,
991002.gz, 991003.gz, and 991004.gz, which contain the
visiting records to a course web site in the department of
computer science at the University of JNTUEC:
http://www.cs.JNTUEC.edu/educationlcourses/142/96a. The
log files were obtained from the Web site:
http://www.cs.JNTUEC.edu/ai/adaptive-data2/, archived by
the authors of [6].

 Each log file contains the visiting records of many
users [or visitors] within a day. For each log file, we first
preprocess the file, identify the pages and then consider the
sessions visited by each user. The pages visited by one user
from the data set X to be clustered. The sessions and the
contents of the pages visited by the user are used to generate
the similarity matrix to be used for clustering the data set X.
In other words, we use the pages visited by one user as a
data set to test the clustering algorithm. This paper focuses
on the clustering of one data set rather than the ensemble of
multiple partitions. Each of the original logs contains several
thousands of users (i.e., distinct IP addresses) and even more
than hundred thousands of requests. After removing the
requests which involve images, applets, .class, .exe files, and
other irrelevant files, the number of users and the number of
requests as well were reduced by a great deal. We observed
that many users only visited just a few pages. In our
experiments, we removed from the log files the users who
visited less than three pages because the clustering to these
pages does not contribute much to the evaluation of the
performance of the clustering algorithm.

Table 1 summarizes the log data, where filel, file2,
file3, and file4 refer to the log files 991001.gz, 99102.gz,
991003.gz, and 991004.gz, respectively. The data sets that
are used to test the clustering algorithm are obtained from
the logs that have been cleaned and do not contain the users
who visited less than three pages.

 In this experiment, the similarity of Web pages are
measured based on the user access frequency as well as page
contents. The access frequency can be obtained from
analyzing the log files, while the best source of the page
contents is the Web pages themselves. However, the actual
Web pages are not available since there was no access to the
source files of the Web site. For solving this problem, the
topic vector for each page is constructed by making use of
the URL information of that page appearing the log files.
The URL portion of each visiting record in a log file
indicates the path of the requested page in the Web site. In
general, the name of the directory indicates the contents of

the documents residing at that directory. Therefore, to some
extent, the directory or subdirectory names appearing in the
path of a page represent the contents of that page. Based on
this intuition, we used the directory names for the path of a
page as the topics of that page. For
iinstance,"/lab/support/online/winNT4" is the path for a page
requested in the logs, then "lab, support, online, winNT4"
are the topics of the page.

TABLE 1. SUMMARY

Log Files File1 File2 File3 File4

No.f req before
preprocessing 121714 73467 76581 132924

No.f distinct users before
preprocessing 5972 3699 4142 6861

No.f requests after
preprocessing 5806 4281 5999 8098

No.f distinct users after
preprocessing 1015 761 840 1455

No.f req after removing
who req < 3 pages 4997 3665 5315 6888

No.f distinct users after
removing users who req<3
pages 360 266 293 489

A. Performance Evaluation
In order to evaluate the performance of the algorithm,

quantitative measures should be designed to measure the
quality of the partition produced by the algorithm.
According to the general definition of a clustering problem,
a good clustering should maximize the similarity among the
objects of each cluster (intra-similarity) and to minimize the
similarity among objects of different clusters (inter-
similarity). In other words, the distance between the objects
within a cluster should be as small as possible (intra-
distance), and the distance between clusters should be as
large as possible (inter-distance). Hence, it is fairly
acceptable and also convincing that the quality of a
clustering can be evaluated from the two aspects, i.e.,
intradistance and inter-distance.

B. Results
Since the agglomerative single-link clustering algorithm

(ASLCA) [3] has been widely used in various applications
and considered as more versatile than many other
algorithms, we decided to choose the ASLCA algorithm to

Authorized licensed use limited to: Indian Institute of Technology Hyderabad. Downloaded on May 18,2022 at 06:42:32 UTC from IEEE Xplore. Restrictions apply.

compare with the LCA algorithm proposed in this paper for
the purpose of performance evaluation. The initial clusters
included only one cluster which contains all the pages
visited by the user. For the ASLCA, the cut-off of the
similarity level (Threshold) has been set to 0.3.

0

0.05

0.1

0.15

0.2

0.25

log1 log2 log3 log4

Da t a se t

LCL
ASLCA

Fig. 4. Intra distance

0

0.2

0.4

0.6

0.8

1

log1 log2 log3 log4

Da t a se t

ASLCA

LCL

Fig. 5. Inter distance

Fig. 4 and Fig. 5 represent the average intra-distance and
inter-distance of the clustering obtained by using both
algorithms. From the results, we can see that the intra-
distance produced by the LCL is lower than that produced
by the ASLCA for all the four log files, and the inter-
distance produced by the LCL is higher than that of the
ASLCA except for the file3 file for which the LCL's result is
only 0.01 higher than that of the ASLCA. Overall, the LCL
outperforms the ASLCA.

C. Experiments
Fig. 6 shows the accuracy results of LCL and Partitional

clustering algorithms. The LCL algorithm is compared with
the Partitional clustering algorithm. In this experiment, we
have considering 100 to 2500 different types of documents.
Here LCL and Partitional Algorithms are applied to
categorize the documents. It is observed from the figure that
an LCL and Partitional Clustering algorithm gives same
accuracy results up to 300 documents. When number of

documents is increased, accuracy of the Partitional
clustering algorithm is decreased. The accuracy of LCL
algorithm is increased. Also the accuracy of LCL is more
than partitional clustering algorithm. So, the accuracy of the
individual clusters will be less than the accuracy of the
Hybrid clustering is called LCL.

Fig. 6. Accuracy results of LCL and Partitional Clustering.

IV. CONCLUSION

In this paper, we propose a new hybrid algorithm which
combines the features of leader’s algorithm and complete-
link algorithm. Using leader algorithm in the first level
increases the speedness of the clustering and cohesion
measure in the second level improves the performance of
clustering. The time and the space complexities of LCL are
also analyzed. Time complexity of this algorithm is linear to
the size of the input data set. This algorithm leads to good
clustering results while incurring a much shorter execution
time.

REFERENCES

[l]. Barges and M. Levene. Data mining of user navigation
patterns. In Proceedings of the Web Usage Analysis and
User Profiling, volume I, pages 31-36, 1999.
[2]. P.Vijaya, M. N. Murthy and D.K. Subramanian.
Leaders-Sub leaders: An efficient hierarchical clustering
algorithm for large data sets. Pattern Recognition Letters 25
[3]. A. K. Jain, M. N. Murty, and P. J. Flynn. Data
clustering: A review. ACM Computing Survey (CSUR),
31(3):264-323, 1999.
[4]. B. Mobasher. R. Cooley, and J. Srivastava. Automatic
personalization based on web usage mining. Communication
of ACM, 43(8). 2000.

Authorized licensed use limited to: Indian Institute of Technology Hyderabad. Downloaded on May 18,2022 at 06:42:32 UTC from IEEE Xplore. Restrictions apply.

[5]. M. Perkowitz and 0. Etzioni, Adaptive web sites: An ai
challenge. 'In Proceedings of IJCAI-97. Volume 1, 1997.
[6]. M. Perkowitz and 0. Etzioni. Towards adaptive web
sites: Conceptual framework and case study. Artificial
Intelligence, 118245 - 275, 2000.
[7]. T. Toolan and N. Kusmerick. Mining web logs for
personalized site maps. In Proceedings of the Intentional
Conference on Web Information System Engineering,
volume I, 2002.
[8]. ChengRuLin and Ming-Syan Chen A Robust and
Efficient Clustering Algorithm based on Cohesion Self-
Merging. In Proceedings of the Intentional Conference on
SIGKDD '02 Edmonton, Alberta, Canada 2002 ACM.
[9]. Yue Xu Hybrid Clustering with Application to Web
Mining. In Proceedings of the IEEE Intentional Conference
2005.

Authorized licensed use limited to: Indian Institute of Technology Hyderabad. Downloaded on May 18,2022 at 06:42:32 UTC from IEEE Xplore. Restrictions apply.

