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Abstract−There are many clustering methods available and 
each of them may give a different grouping of datasets. It is 
proven that hybrid clustering algorithms give efficient results 
over the other algorithms. In this paper, we propose an efficient 
hybrid clustering algorithm by combining the features of 
leader’s method which is an incremental clustering method and 
complete linkage algorithm which is a hierarchical clustering 
procedure. It is most common to find the dissimilarity between 
two clusters as the distance between their centorids or the 
distance between two closest (or farthest) data points. However, 
these measures may not give efficient clustering results in all 
cases. So, we propose a new similarity measure, known as 
cohesion to find the intercluster distance. By using this measure 
of cohesion, a two level clustering algorithm is proposed, which 
runs in linear time to the size of input data set. We demonstrate 
the effectiveness of the clustering procedure by using the 
leader’s algorithm and cohesion similarity measure. The 
proposed method works in two steps: In the first step, the 
features of incremental and hierarchical clustering methods are 
combined to partition the input data set into several smaller 
subclusters. In the second step, subclusters are merged 
continuously based on cohesion similarity measure. We 
demonstrate the effectiveness of this framework for the web 
mining applications.       

  

I. INTRODUCTION 
 

One drawback of the partitional clustering is the difficulty in 
determining the optimal number of clusters(k). Incremental 
clustering is an efficient method and runs in linear time to 
the size of input data set. In most related studies, the 
dissimilarity between two clusters is defined as the distance 
between their centroids or the distance between two closest 
data points. Hierarchical clustering algorithms create a 
hierarchical decomposition of data set based on some 
criterion. The decomposition can be described as a 
dendrogram that represents a series of nested partitions. A 
partition is obtained by cutting the dendrogram at some 
desired level. Hierarchical algorithms do not suffer from the 
problem of choosing a pre-specified number for the output 
clusters [3]. 
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Hierarchical clustering algorithms can differ in their 
operation. Agglomerative clustering methods start with each 
object in a distinct cluster and successively merge them to 
larger clusters until a stopping criterion is satisfied. 
Alternatively, divisive algorithms begin with all objects in a 
single cluster and perform splitting until a stopping criterion 
is met. Both agglomerative and divisive hierarchical 
algorithms are static in the sense they never undo what was 
done previously, which means that objects which are 
committed to a cluster in the early stages, cannot move to 
another cluster. In other words, once a cluster is split or two 
clusters are merged, the split objects will never come 
together in one cluster or the merged objects will be never in 
the same cluster, no matter whether the splitting or the 
merging is the correct action or not. But in practice, some 
splitting or merging actions may not be correct and there is a 
need to rearrange the partition. This problem is a cause for 
inaccuracy in clustering, especially for poorly separated data 
sets. 

In this paper, we present a hybrid clustering 
algorithm namely, Leaders complete linkage algorithm 
(LCL) that combines the advantages of hierarchical 
clustering and incremental clustering techniques. Instead of 
rearranging all objects like what partitional algorithms 
usually do, in each iteration of the clustering, some objects 
but all are moved from one cluster to another by the way of 
splitting a cluster or merging two clusters. It can start with a 
single cluster containing all objects or start with each object 
in a distinct cluster. At each step during the clustering, the 
quality of the current partition is examined as well as the 
quality of the partition after splitting one cluster or merging 
two clusters. If the quality of the partition is improved after 
the splitting or the merging, then a further splitting or 
merging will be performed. Otherwise, the clustering will 
terminate and the current partition is the final clustering 
result. The idea behind the mix of splitting and merging is to 
allow amendment to the previous clustering result so that 
high quality clustering can be achieved. The amount of 
information available on the Web has been increasing 
dramatically in recent years. At present the main problem 
that the Web users face with is no longer the lack of 
information, but the way of finding information that can 
meet their specific needs. Recently, many researchers have 
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focused their study on applying data mining techniques to 
Web server logs for automatically generating user navigation 
patterns such as popular navigation sessions, item 
association rules, page clusters, and user clusters [l -7], [9]. 
A variety of knowledge discovery techniques have been 
applied to obtain navigation patterns. Clustering is one of the 
popularly used techniques for grouping user navigation 
sessions or Web pages. The LCL algorithm proposed here 
has been experimentally tested on a set of real Web server 
log data to find Web page clusters. Hybrid clustering 
methods are used to overcome the misclassification problem 
with large data sets. The basic technique is to first find 
suitable prototypes from the large data set and then apply the 
clustering method using only the prototypes. 

 

 

 

 

 

 

                           

                     Fig.1.   Overall System Design 

Fig. 1 shows the overall system design of text 
document clustering process. In this process, documents are 
taken as the input. These input documents are analyzed or 
preprocessed by the document analyzer. In this analysis 
phase, features of the each document are selected and 
represented in terms of frequency matrix. Further, this 
frequency matrix is converted into vector representation and 
the vectors are normalized. Then a similarity measure is 
applied on each document and a similarity matrix is 
constructed. Finally, the text documents can be clustered 
based on a similarity measure.  

The rest of the paper is organized as follows. 
Section 2 introduces the hybrid clustering algorithm. Section 
3 presents the experimental results of applying the hybrid 
clustering algorithm to Web page clustering. Comparisons to 
related work are also provided in this section. Finally, 
Section 4 summarizes the paper.  

II. HYBRID CLUSTERING ALGORITHM 

A. Leader Clustering Algorithm 
Leader clustering algorithm [2] is a single pass algorithm 

and very efficient in terms of computational requirements. 

When leader algorithm is applied on the data set, it chooses 
one data object and assumes it as a first leader. Then, it 
chooses all the data objects one by one and compares it with 
the leader. The comparison is based on the Euclidean 
distance between leader and the current data object. Whether 
to put the current data object within the cluster lead by that 
particular leader or make that data object as a new leader is 
decided based on the threshold value. This process will 
continue until the entire data set has been processed. 
Following is the leader algorithm: 
Algorithm: Leader Clustering 
Input: Data set, Threshold value (Th). 
Output: Number of Clusters (k). 
Initialize a leader, add it to the leader list and 
set leader counter L =1 
Do for all patterns i =2 to N 
{ 
Calculate the distance between pattern i and all leaders 
Find the nearest leader 
If (distance between pattern i and nearest leader<Threshold) 
then 
    { 
       Assign pattern i to the nearest leader 
       Label the cluster number 
       Add pattern i to member list of this cluster 
       Increment member count of this cluster 
     } 
else 
     { 
        Add it to the leader list 
        Increment leader counter L = L + 1 
      } 
}  
 

For a given threshold value (Th), leaders method 
[2] works as follows. It maintains a set of leaders L, which is 
incrementally built. For each pattern x in dataset (D) if there 
is a leader l Є L such that distance between x and l is less 
than Th, then x is assigned to the cluster represented by l. 
Note that even if there are many such leaders, only one (the 
first encountered one) is choosen. Because of this the cluster 
represented by a leader is of semi-spherical shape. If there is 
no such leader then x itself becomes a new leader and is 
added to L. Along with each leader, a count indicating 
number of patterns that are grouped under the leader is also 
stored. 

Leader clustering algorithm scans the input data set 
only once and gives the result very quickly. The advantage 
with leaders clustering algorithm is that there is no need to 
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know the number of clusters in advance. Leaders clustering 
algorithm finds appropriate number of clusters based on the 
threshold value (Th). The leader algorithm requires only 
O(n) time to get the clusters from the data set with n number 
of data objects. The drawbacks with this algorithm are: (1) 
Threshold value must be very appropriate, (2) output 
depends on the order in which data is presented, and (3) 
arbitrary shape of the cluster may not be possible to 
determine. Leader’s algorithm produces only the circular 
clusters. Also, the result of leader clustering algorithm is 
highly affected by the presence of noise. 

B. Hierarchical Clustering Algorithms 
As its name implies, a hierarchical clustering algorithm 

establishes a hierarchical structure as the clustering result. 
Owing to their good quality of clustering results, hierarchical 
algorithms are widely used especially in document clustering 
and classification. The outline of a general hierarchical 
clustering algorithm is given below: 

Hierarchical Clustering Algorithm: 

1.    Initially, each data point forms a cluster by itself. 
2.    Repetitively merge the two closest clusters. 
3.    Output the hierarchical structure that is constructed. 
 
           Most existing hierarchical clustering algorithms are 
variations of the single-link and complete-link algorithms. 
Both algorithms require time complexity of O(n2 log n). 
Where n is the size of the input data set. These algorithms 
differ in the way they characterize the similarity between a 
pair of clusters. A single-link clustering algorithm differs 
from a complete-link clustering algorithm in the intercluster 
distance measure. The single-link algorithm uses the 
distance between the two closest points of the two clusters as 
the intercluster distance, i.e,  
 
            dist (Ci,Cj)=min{dist(oi,oj)| oiЄCi, ojЄCj)},        (1)  

        where as the complete-link algorithm uses the distance 
of two farthest points as the intercluster distance, i.e, 

         dist (Ci, Cj) =max{dist(oi, oj)| oi Є Ci, oj ЄCj)}.     (2) 

             In either case, two clusters are merged to form a 
larger cluster based on minimum distance criteria. The 
complete-link algorithm produces tightly bound or compact 
clusters. The single-link algorithm, by contrast, suffers from 
a chaining effect. It has a tendency to produce clusters that 
are elongated. The clusters obtained by the complete-link 
algorithm are more compact than those obtained by the 
single-link algorithm. From a pragmatic viewpoint, it has 

been observed that the complete-link algorithm produces 
more useful hierarchies in many applications than the single-
link algorithm.  

C. Proposed Approach 
 Several clustering methods have been proposed to 

combine the features of two different clustering algorithms. 
In general, these algorithms first partition the input data set 
into m subclusters and then construct a hierarchical structure 
based on these m subclusters. In this paper we propose a new 
hybrid clustering algorithm known as leaders complete-
linkage (LCL) to merge leaders algorithm and hierarchical 
clustering algorithm called complete-linkage. In LCL 
clustering, we first apply Leaders algorithm to produce sub-
clusters represented by leaders. Next complete-linkage 
algorithm is applied on each leader to produce final arbitrary 
shaped clusters.  

(i). Similarity Measure between Subclusters 
In this paper, we propose a new measure of similarity 
between two subclusters known as cohesion which is 
intrinsically different from other prior measures. Cohesion 
[8] is more appropriate for an intercluster similarity measure 
because it does not judge the similarity of two subclusters by 
considering only few data points. Rather, the cohesion 
measure takes the distributions of the two clusters into 
account in order to find the similarity. 

 As shown in Fig. 2, the distance between the 
centroids of the two clusters in Fig. 2a and that of the two 
clusters in Fig. 2b are the same. The two clusters shown in 
Fig. 2b are more inclined to be merged together. So, we 
propose a new similarity measure namely, cohesion based on 
the joinability of two clusters, referring to the existence of a 
data point. Conceptually, joinability is the merging 
inclination of two clusters according to the existence of a 
shared data point. Thus, joinability is expected to have the 
following properties:    (1) Data points located closer to the 
boundary of the two clusters are more important, and (2) The 
merging inclination should not be determined by only a few 
points, i.e., the value of joinability should not vary 
dramatically.  

 

 

 

Fig.2. Illustration for subclusters that have different cohesion values. (a) 
Two clusters with smaller cohesion.  (b) Two clusters with greater cohesion. 
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Formally, we have the following definition for joinability: 
 
Definition 1. The joinability of the two clusters (Ci and Cj) 
referring to the existence of the point p with location v is 
defined as: 
               Join (p, Ci, Cj) = min (fi (v), fj(v)),              (3) 
 
        where fi and fj are the probability density functions 
(pdfs) of the distributions in Cluster Ci and Cj, respectively. 
An illustration of joinability is shown in Fig. 3.  

 

 

 

 

 

 

     

    Fig. 3. An illustration for the meaning of joinability 

The joinabilities of the data points at v1 and v2 are j1 and j2, 
respectively. With the notion of joinability, the definition of 
cohesion of two clusters is given below: 

Definition 2. The cohesion of two clusters (Ci and Cj) is 
defined as 

           chs (Ci, Cj) =    ,

( , , )

| | | |
i j

i j

p C C

i j

join p C C

C C
∈

+

∑
,              (4) 

   where |Ci| is the size of Cluster Ci.          
 In general, the probability density function of f(v) 

can be evaluated in constant time. Thus, the time complexity 
of the computation of cohesion of two clusters (Ci and Cj) is 
linear to the size of the two clusters, i.e.,        O(|Ci| + |Cj|). 

(ii). Algorithm LCL 

          Now, we describe the proposed Leaders complete-
linkage clustering (LCL) algorithm as follows: 

Input:  Input data set, size of the data set n, number of 
subclusters m, and desired number of clusters k. 

Output:  Hierarchical structure of the k clusters. 

1. Apply Leaders Algorithm on the input data set to obtain m 
subclusters by using appropriate threshold value.  

2. Apply the complete-link clustering algorithm on the m 
subclusters produced in Step 1 with cohesion as the 
similarity measure and stop when k clusters are obtained. 

            Algorithm LCL is a two-phase clustering algorithm. 
In the first phase, it adopts the Leader algorithm to divide 
the input data set into m subclusters. At the beginning of 
phase 2, it obtains the cohesions of these m subclusters 
produced in the first phase. Then, a complete-link clustering 
algorithm based on cohesion to obtain the final clusters is 
performed. 

             In algorithm LCL, the parameter m, i.e., the number 
of subclusters, is the only additional parameter. The desired 
clustering results can be obtained by adjusting the value of 
m. It is clear that the value of parameter m falls in the range 
of (k, n). When m = k, algorithm LCL is degenerated to the 
leader clustering algorithm. When m approaches n, this 
algorithm is reduced to the complete-linkage algorithm. It is 
known that the leader algorithm is good for obtaining 
clusters of circular shape, while the complete-link algorithm 
is able to find clusters of any shape. With prior knowledge, 
we can make the clustering algorithm adapt to various inputs 
by adjusting the parameter m. The algorithm LCL leads to a 
better clustering results than those by most prior methods, 
showing not only the generality but also the advantage of 
algorithm LCL over the leader and complete-link methods. 

(iii). Time and Space Complexities 
In step 1, Leaders algorithm takes time O(n) to apply the 
Leaders algorithm on the input data set to obtain m 
subclusters. Then, at the beginning of step 2, similarity 
measure between any two subclusters based cohesion is 
determined. Recall that the time complexity of each 
evaluation is linear to the size of the clusters. The complete-
link clustering algorithm is applied on m subclusters and has 
time in the order of O(m2 log m). The time complexity of 
algorithm LCL is therefore O(n) + O(m2 logm) = O(n + m2 
log m). In the first step, we only need the memory space to 
store input data set and group relationship of subclusters, 
which requires the memory space of O(n2).  In the second 
step, space is required for the complete-link clustering 
algorithm. Thus, the space complexity is O(m2). Since m is 
always smaller than n, the total space complexity of 
algorithm LCL is O(n2). 

III. EXPERIMENTAL RESULTS 

 In this section, we first describe the data used in the 
experiments and then the methods to evaluate the 
performance of the algorithm. Finally, the results obtained in 
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the experimental studies are discussed. The experiments 
were conducted using four web server log files, 991001.gz, 
991002.gz, 991003.gz, and 991004.gz, which contain the 
visiting records to a course web site in the department of 
computer science at the University of JNTUEC: 
http://www.cs.JNTUEC.edu/educationlcourses/142/96a. The 
log files were obtained from the Web site: 
http://www.cs.JNTUEC.edu/ai/adaptive-data2/, archived by 
the authors of [6].  

               Each log file contains the visiting records of many 
users [or visitors] within a day. For each log file, we first 
preprocess the file, identify the pages and then consider the 
sessions visited by each user. The pages visited by one user 
from the data set X to be clustered. The sessions and the 
contents of the pages visited by the user are used to generate 
the similarity matrix to be used for clustering the data set X. 
In other words, we use the pages visited by one user as a 
data set to test the clustering algorithm. This paper focuses 
on the clustering of one data set rather than the ensemble of 
multiple partitions. Each of the original logs contains several 
thousands of users (i.e., distinct IP addresses) and even more 
than hundred thousands of requests. After removing the 
requests which involve images, applets, .class, .exe files, and 
other irrelevant files, the number of users and the number of 
requests as well were reduced by a great deal. We observed 
that many users only visited just a few pages. In our 
experiments, we removed from the log files the users who 
visited less than three pages because the clustering to these 
pages does not contribute much to the evaluation of the 
performance of the clustering algorithm.        

Table 1 summarizes the log data, where filel, file2, 
file3, and file4 refer to the log files 991001.gz, 99102.gz, 
991003.gz, and 991004.gz, respectively. The data sets that 
are used to test the clustering algorithm are obtained from 
the logs that have been cleaned and do not contain the users 
who visited less than three pages. 

               In this experiment, the similarity of Web pages are 
measured based on the user access frequency as well as page 
contents. The access frequency can be obtained from 
analyzing the log files, while the best source of the page 
contents is the Web pages themselves. However, the actual 
Web pages are not available since there was no access to the 
source files of the Web site. For solving this problem, the 
topic vector for each page is constructed by making use of 
the URL information of that page appearing the log files. 
The URL portion of each visiting record in a log file 
indicates the path of the requested page in the Web site. In 
general, the name of the directory indicates the contents of 

the documents residing at that directory. Therefore, to some 
extent, the directory or subdirectory names appearing in the 
path of a page represent the contents of that page. Based on 
this intuition, we used the directory names for the path of a 
page as the topics of that page. For 
iinstance,"/lab/support/online/winNT4" is the path for a page 
requested in the logs, then "lab, support, online, winNT4" 
are the topics of the page. 

TABLE 1. SUMMARY 

Log Files File1 File2 File3 File4 

No.f req before 
preprocessing 121714 73467 76581 132924 

No.f distinct users before 
preprocessing 5972 3699 4142 6861 

No.f requests after 
preprocessing 5806 4281 5999 8098 

No.f distinct users after 
preprocessing 1015 761 840 1455 

No.f req after removing 
who req < 3 pages 4997 3665 5315 6888 

No.f distinct users after 
removing users who req<3 
pages 360 266 293 489 

 

A. Performance Evaluation 
In order to evaluate the performance of the algorithm, 

quantitative measures should be designed to measure the 
quality of the partition produced by the algorithm. 
According to the general definition of a clustering problem, 
a good clustering should maximize the similarity among the 
objects of each cluster (intra-similarity) and to minimize the 
similarity among objects of different clusters (inter-
similarity).  In other words, the distance between the objects 
within a cluster should be as small as possible (intra-
distance), and the distance between clusters should be as 
large as possible (inter-distance). Hence, it is fairly 
acceptable and also convincing that the quality of a 
clustering can be evaluated from the two aspects, i.e., 
intradistance and inter-distance. 
 

B. Results 
Since the agglomerative single-link clustering algorithm 

(ASLCA) [3] has been widely used in various applications 
and considered as more versatile than many other 
algorithms, we decided to choose the ASLCA algorithm to 
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compare with the LCA algorithm proposed in this paper for 
the purpose of performance evaluation. The initial clusters 
included only one cluster which contains all the pages 
visited by the user. For the ASLCA, the cut-off of the 
similarity level (Threshold) has been set to 0.3. 
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Fig. 4. Intra distance 
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Fig. 5. Inter distance 

Fig. 4 and Fig. 5 represent the average intra-distance and 
inter-distance of the clustering obtained by using both 
algorithms. From the results, we can see that the intra-
distance produced by the LCL is lower than that produced 
by the ASLCA for all the four log files, and the inter-
distance produced by the LCL is higher than that of the 
ASLCA except for the file3 file for which the LCL's result is 
only 0.01 higher than that of the ASLCA. Overall, the LCL 
outperforms the ASLCA. 

C. Experiments 
Fig. 6 shows the accuracy results of LCL and Partitional 

clustering algorithms. The LCL algorithm is compared with 
the Partitional clustering algorithm. In this experiment, we 
have considering 100 to 2500 different types of documents. 
Here LCL and Partitional Algorithms are applied to 
categorize the documents.  It is observed from the figure that 
an LCL and Partitional Clustering algorithm gives same 
accuracy results up to 300 documents. When number of 

documents is increased, accuracy of the Partitional 
clustering algorithm is decreased. The accuracy of LCL 
algorithm is increased. Also the accuracy of LCL is more 
than partitional clustering algorithm. So, the accuracy of the 
individual clusters will be less than the accuracy of the 
Hybrid clustering is called LCL. 

 

Fig. 6. Accuracy results of LCL and Partitional Clustering. 

          

IV. CONCLUSION 

In this paper, we propose a new hybrid algorithm which 
combines the features of leader’s algorithm and complete-
link algorithm. Using leader algorithm in the first level 
increases the speedness of the clustering and cohesion 
measure in the second level improves the performance of 
clustering. The time and the space complexities of LCL are 
also analyzed. Time complexity of this algorithm is linear to 
the size of the input data set. This algorithm leads to good 
clustering results while incurring a much shorter execution 
time. 
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