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Abstract—Human action recognition is an important com-
ponent in semantic analysis of human behavior. In this paper,
we propose an approach for human action recognition based
on motion capture (MOCAP) information using convolutional
neural networks (CNN). Distance based metrics computed
from MOCAP information of only three human joints are
used in the computation of features. The range and temporal
variation of these distance metrics are considered in the design
of features which are discriminative for action recognition.
A convolutional neural network capable of recognizing local
patterns is used to identify human actions from the temporal
variation of these features, which are distorted due to the
inconsistency in the execution of actions across observations
and subjects. Experiments conducted on Berkeley MHAD
dataset demonstrate the effectiveness of the proposed approach.

Keywords-convolutional neural networks (CNN); motion cap-
ture (MOCAP);

I. INTRODUCTION

Human action recognition is a widely studied problem in
computer vision. Action recognition algorithms use motion
capture (MOCAP) information to learn and recognize the
sequence of motions for each action. MOCAP refers to
a broad range of techniques used to capture the motion
of objects and people. The MOCAP techniques to capture
human motion vary from tracking wearable markers to pose
prediction from depth/multi-view videos [1] [2]. Human
motion capture using MOCAP techniques is widely used
to collect ground truth information for the validation of
computer vision algorithms and for applications in sports,
medicine and military. Over the years, the availability of
low cost, high mobility depth sensors like Kinect led to the
development and use of marker less motion tracking tech-
niques in human computer interaction (HCI) systems and
in entertainment. Experimental studies were conducted to
identify the significance of pose information in recognizing
human actions [3] and the most informative human joints
for recognizing an action [4]. These studies suggests that
high level pose features can greatly outperform mid and
low level features for recognizing human actions and that
human actions can be recognized with high accuracy from
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MOCAP information of a few human joints. In this paper,
we consider the MOCAP information of only three human
joints to recognize eleven human actions.

A wide range of techniques were proposed to recognize
individual, group actions and interaction among humans or
with objects by utilizing different modality. Zhuolin Jiang et
al. [5] considered action bank features generated from RGB
videos to learn discriminative dictionaries for human action
recognition using ’label consistent K-SVD’ algorithm. Hu-
man trajectories are modeled as heat sources by Weiyao Lin
et al. [6] to recognize group activities from the similarity of
heat maps. Techniques for human detection, object detection
and tracking are combined by Alessandro Prest ef al. [7] to
model and localize human object interaction, for recognizing
actions involving human object interaction. The gray level,
gradient and optical flow of RGB video frames are used
as features to train a 3D convolutional neural network for
human action recognition [8]. The pairwise skeletal distance
and spatio-temporal motion information are combined using
random forest learning for 3D action recognition [9]. The
spatial location, temporal differences and normalized motion
trajectories of human joints are considered to recognize
human actions from skeletal information using deep neural
network model [10]. A broad range of joint, plane and veloc-
ity features were evaluated by Yun ef al. [11] to recognize
interaction among humans using support vector machines.
Lu Xia et al. [12] represented human pose using histogram
of 3D joint locations and recognized human actions by
modeling the the temporal evolution of pose using HMM.

Some of the issues with existing algorithms are: 1)
dependence on features with uncertain discriminative infor-
mation 2) use of features with redundant information and
3) high computation complexity. In addition, human action
recognition becomes more difficult due to the following
reasons: a) alternative limb movements for an action b)
inconsistency in speed of execution of an action and c) the
lack of alignment of movements across recordings for an
action. In the proposed approach, we address these issues
by considering MOCAP skeleton information of only three
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human joints for feature extraction and a convolutional neu-
ral network architecture for classification. The reminder of
this paper is organized as follows: In section 2, the proposed
approach for human action recognition, feature extraction
from MOCAP information and convolutional neural network
(CNN) classifier are discussed. Experimental results were
discussed in section 3. The last section gives conclusions of
this work.

II. PROPOSED APPROACH

In this paper, we propose an approach for human action
recognition based on the features derived from MOCAP
information using convolutional neural networks. The MO-
CAP information of three human joints is used to compute
four distance metrics. The nature and range of variation
of these distance based metrics for each action is used to
construct the necessary discriminative features. The temporal
variation of these features is given as input to the convolu-
tional neural network for action recognition. Further details
are provided in the following sections.

A. MOCAP distance metrics

The human MOCAP information contains the location of
each human joint in 3D space over time. This joint tracking
information can be used to compute distance, angle, velocity
and other metrics/features for human action recognition.
The distance based metrics considered in this paper for the
computation of features are shown in the MOCAP skeletal
structure in Figure 1(a).

In our approach, we consider the tracking information
of the right-hand, left-hand and the pelvis to compute the
following distance based metrics: a) distance between the
left and right hands b) height of right-hand above the ground
¢) height of the left-hand above the ground and d) the height
of pelvis above the ground. The nature and range of variation
of these distance metrics are used for action recognition.
Some of the actions that can be recognized using these
metrics are shown in Figure 1(b) to (e).

Some of the observations from Figure 1 are 1) clapping
action can be recognized from distance between the hands
(metric a) 2) wave one hand action can be identified from
the height of hands above the ground (metrics b, ¢) 3)
sitting on a chair action can be detected from the height
of pelvis above the ground (metric d) and 4) bending action
can be recognized from the height of hands above the ground
(metrics b, ¢). It can be observed that metrics b, ¢ can be
used to recognize both wave one hand and bending actions
but the range of variation of b and c is different for these
actions. Thus, some of the metrics can be used to recognize
more than one action, depending on their range of variation.
The process of feature extraction from distance metrics,
exploiting their nature and range of variation for each action,
is explained in the following section.
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B. Feature extraction

The four distance metrics computed from MOCAP infor-
mation are normalized for each subject using their T-pose
information to ensure consistency in the nature and range
of variation of these metrics across subjects with varying
physique. This is accomplished by normalizing metric a by
dividing it with the distance between the hips. Metric d by
subtracting and dividing it with the value of d in T-pose.
Metrics b, ¢ are normalized by dividing them with the height
of left, right shoulders respectively to ensure consistency in
their range of variation for subjects with long/short hands.
Thus, metric b takes a value above 1 when the left hand
is above the left shoulder. Similarly, metric ¢ takes a value
above 1 when the right hand is above the right shoulder.
As some of these metrics can be used to recognize more
than one action, the nature and range of variation of these
metrics for each action needs to be considered for feature
extraction. The typical nature and range of variation of these
four normalized distance metrics over time for some actions
is shown in Figure 2.

From Figure 2, it can be observed that the height of
pelvis above the ground (metric d) takes a value below
zero for jump, jumping jack, sit-down then stand-up, sit-
down and stand-up actions. These actions require significant
movement in the lower body and can be considered as lower
body actions. The remaining actions can be considered as
the upper-body actions, which do not involve significant
movement in the lower body. As metric d takes a value
below -0.31 for sit-down then stand-up, sit-down and stand-
up actions only the variation of d below -0.31 is considered
as a feature. Similarly, metric d takes a value above 0.05 only
for jump and jumping jack actions due to which the variation
of metric d above 0.05 is considered as another feature. The
nature (frequency) of variation of metric d below -0.31 is
different for jump and jumping jack actions, thereby acting
as a discriminative feature for these two actions. The two
features considered so far (using metric d) can recognize five
lower body actions without any false positives from other
actions as the operating range of metric d for upper body
actions do not overlap with these features.

As metrics b and c take a value below 0.35 for bending
action, variation of b below 0.35 is considered as a feature
to recognize bending action. The variation of metrics b and
¢ above 0.95 are also considered as features as they can
recognize punching, wave one hand and wave two hands
actions. For punching and wave two hands actions metrics
b and c follow a sine wave but are out of sync for punching
and in-sync for wave two hands action. Only one of the
metrics b, ¢ follow a sine wave for wave one hand action.
The nature of variation of b with respect to ¢ provides the
necessary discriminative information for recognizing these
three actions. The features considered so far avoid any false
positives in recognizing punching, wave one hand and wave
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Figure 1. MOCAP skeletal structure depicting the distance metrics considered and the key pose for some human actions
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Figure 2.

two hands actions. The variation of metrics b and ¢ above
0.95 can also be used to recognize throwing a ball action
from their nature of variation as shown in Figure 2. The
variation of metric a below 0.5 is considered as a feature to
recognize clapping action and all the features defined so far
avoid any false positives during recognition. The summary
of computation of features from distance metrics is given
in Table I. The effective range of variation of a metric for
each feature is determined emperically. The features #2 to
#6 are locally scaled to vary between 0 and 1 when their
range exceeds 0.02 and feature #2 is complemented during
scaling. The features are scaled to normalize the variation
in limb movements for actions. To normalize the variation

#temporal sample

in speed of execution of actions, the number of temporal

#temporal sample

Plot of variation of normalized distance metrics over time for some actions

samples of all actions are down sampled to 104 samples.

Feat. #

Distance metric used

range considered

AN AW —

dist. between hands (a)
height of right hand (b)
height of right hand (b)
height of left hand (c)
height of pelvis (d)
height of pelvis (d)

less than 0.5
less than 0.35
greater than 0.95
greater than 0.95
greater than 0.05
less than -0.31

Table I

COMPUTATION OF FEATURES FROM DISTANCE METRICS

The temporal variation of significant features for each
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action is shown in Table II. Actions are analyzed by grouping
them into two categories namely upper body and lower
body actions considering the entropy of various human joints
during these actions. The significant features for recognizing
an action are shown in the third column of Table II, with op-
tional features in square brackets and their temporal variation
as a 2D representation in column four. The 2D representation
is obtained by duplicating the features considering a two
element margin from borders and between the features. The
features are duplicated to emphasize the local patters for
efficient classification.

Action Type Significant Feature Variation
clapping upper-body 1[234] ﬁ
bending upper-body [112 [3 4] E
punching upper-body [12]34 _
wave 1 hand upper-body [12] 3 [4] =
wave 2 hands upper-body [12]34 E
throwing a ball | upper-body [12]3 4] - — ]
jump lower-body 5 [6] | e s ==
jumping jack lower-body 5 [6] frpinamst s i
sit and stand lower-body [5]1 6 N
sit-down lower-body [516 —E
stand-up lower-body [5]1 6 I —
Table II

VARIATION OF SIGNIFICANT FEATURES FOR EACH ACTION

Thus the six features constructed from the four metrics
provide the necessary discriminative information to classify
these actions. The 2D representation of the typical temporal
variation of the six features for some actions is shown in
Figure 3. This 2D representation of the temporal variation
of the six features provides the necessary discriminative
information (as local patterns) to recognize each action.
The use of a convolutional neural network to recognize
human actions from the temporal variation of these features
is elaborated in the following section.

C. Action recognition using CNN

A convolutional neural network (CNN) [13] is capable
of recognizing local patterns with some degree of shift and
distortion. This characteristic is exploited to classify human
actions from the local patterns in the 2D representation of
actions. A typical CNN classifier architecture used as a clas-
sifier [14] consists of an alternating sequence of convolution
and subsampling layers followed by a neural network for
classification. The architecture considered in the proposed
approach is shown in Figure 4 whose configuration is listed
in Table III. Here, {C1, C2} represents the convolution
layers, {S1, S2} represent the subsampling layers, {F1, F2,
F3, F4} represent the feature maps generated at the output
of 1, 2, 3, 4 layers of the CNN classifier respectively and I,
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(a) jump

(b) jumping jack (c) bending

(e) wave 1 hand (f) wave 2 hands
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(d) punching

(g) clapping (i) stand-up

(j) throwing a ball

(k) sit-down and stand-up

Figure 3. 2D representation of temporal variation of features for various
human actions.

O denote the input, output of the Neural network. Sigmoid
transfer function is used as the activation function in all the
neurons and backpropagation algorithm in batch mode is
used for training.

2D REPRESENTATION

(of temporalvarition of features)
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Figure 4. Proposed CNN architecture for human action recognition

Layer: Configuration Feature map: #, config
Cl:  3x3 templates | Fl: 4, 24x24 feature maps
S1:  2x2 templates | F2: 4, 12x12 feature maps
C2:  3x3 templates | F3: 8, 10x 10 feature maps
S2: 2x2 templates | F4: 8, 5x5 feature maps
I 200 vector O: 11 outputs
Table IIT

CONFIGURATION OF THE PROPOSED CNN ARCHITECTURE

The 2D representation of actions elaborated in previous
section is scaled to generate a 26x26 matrix, which is
presented as input to the classifier. The CNN is trained
to classify actions from their 2D representation. The ex-
perimental setup and results are discussed in the following
section.

III. EXPERIMENTAL RESULTS

The proposed approach for human action recognition from
MOCAP information using convolutional neural network is
tested on Berkeley MHAD dataset [15]. The dataset consists
of 11 actions performed by 12 subjects repeating every
action 5 times in each recording with 5 recordings per
action-subject pair. The details of the human actions in this
dataset for one subject are shown in Table IV.



Action # of repetitions/recording | # recordings | =~ length
Jump 5 5 5 sec
Jumping jack 5 5 7 sec
Bending 5 5 12 sec
Punching 5 5 10 sec
Wave 2 hands 5 5 7 sec
Wave 1 hand 5 5 7 sec
Clapping 5 5 5 sec
Throwing 1 5 3 sec
Sit then stand 5 5 15 sec
Sit-down 1 5 2 sec
Stand-up 1 5 2 sec
Table IV

THE DESCRIPTION, # OF REPETITIONS PER RECORDING, # OF
RECORDINGS AND DURATION OF ACTIONS IN BERKELEY MHAD
DATASET FOR ONE SUBJECT

Each action is captured simultaneously by an optical
motion capture system, four multi-view stereo vision cam-
era arrays, two Microsoft Kinect cameras, six wireless
accelerometers and four microphones. The motion capture
data is acquired by tracking the 3D position of 43 LED
markers placed at different body parts and at the 25 joints
shown in Figure 1(a). The T-pose configuration of a subject
contains the basic skeleton information of a subject, which
is used in the proposed approach to normalize the MOCAP
distance metrics. As each action is performed five times in
each recording (except for three actions), the middle 60%
of the recording is considered as the representative signal
of each action upon which metric computation and features
extraction are carried out. From the last column of Table
IV, it can be observed that the length of the recording
changes from action to action and across recordings. The
representative signal length is scaled to generate a signal of
104 temporal samples which will be down-sampled further
to 26 temporal samples before presenting it as the input
to the CNN. The scaling of representative signal to 104
temporal samples results in the generation of feature vectors
of same size for all actions, thereby normalizing the variation
in speed of execution of an action across observations and
subjects.

Five-fold cross-validation is used to evaluate the per-
formance of the proposed approach by training the CNN
classifier using back propagation algorithm with a batch size
of 44 for 1000 epochs. The confusion matrix of the proposed
approach on Berkeley MHAD dataset is shown in Figure 5.

An average classification accuracy of 98.38% is obtained
using five-fold group-wise cross validation. The variation
in limb movements for actions, the speed of execution of
actions and the alignment of movements across recording
of an action result in noisy signal with minor shift. Despite
the noise, a low classification error is obtained due to the
tolerance of CNN to noisy input signal with minor shift. The
plot of average classification error against training iteration
for five-fold cross validation is shown in Figure 6.
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Figure 5. Confusion matrix of proposed approach using MOCAP infor-
mation on Berkeley MHAD dataset
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Figure 6. Plot of average classification error against training iterations

Experiments were conducted considering various CNN
configurations in terms of number of layers, size of templates
and number of feature maps. The configuration shown in
Figure 4 and listed in Table III is identified to be the best
CNN configuration for this task. Table V shows reported
results for action recognition using MOCAP information on
Berkeley MHAD dataset. Ferda Ofli ef al. [15] considered
angles at 21 joints and Muhammad Shahzad Cheema et al.
[16] used 3D position of all the 43 joints to recognize actions
from MOCAP information.

Most of the existing MOCAP action recognition algo-
rithms use 3D information of more than 20 joints and some
of these approaches use computationally expensive models
for recognition. The current state of the art approach for
action recognition on Berkeley MHAD dataset [17] consid-
ers all body part configurations (from MOCAP information
of 28 joints) and temporal scales to attain 100% accuracy.
In contrast to the existing approaches, our approach uses
MOCAP information of only three human joints to attain
better accuracy than most of the existing approaches and



Approach # of joints | Accuracy
considered (in %)
MOCAP with NN [15] 21 75.55
MOCAP with K-SVM [15] 21 79.93
Multi factor classification [16] 43 87.83
Single factor action [16] 43 89.85
Disc. Hierarchy of LDSs [17] 28 100.00
Our approach (5-fold cross validation) 3 98.38

Table V
PERFORMANCE OF DIFFERENT HUMAN ACTION RECOGNITION
APPROACHES ON BERKELEY MHAD DATASET

is comparable with the state of the art approach for action
recognition from MOCAP information on Berkeley MHAD
dataset. The major research contributions of this work are: 1)
the design of discriminative features using a small number
(three) of informative joints and 2) the representation of the
features for classification by a CNN classifier.

IV. CONCLUSIONS

An approach for human action recognition with features
extracted from MOCAP information using convolutional
neural network architecture is presented. Experimental re-
sults suggests that a high classification accuracy can be
achieved by considering features derived from only three
MOCAP joints. The ability of a convolutional neural net-
work to recognize local patterns with some degree of shift
and noise is used to recognize actions from the nature and
range of variation of features, in the presence of distortion
due to variation in limb movements, speed of execution of
actions and the alignment of movements across recordings.
The future work involves extensive experimentation on other
MOCAP datasets and datasets with predicted human joint
information like JHMDB [3], to identify the set of features
applicable for action recognition across multiple datasets.
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