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ABSTRACT

We propose an approach for sparse representation of dense
features for action classification. Sparse representation has
already been shown in literature as a good approximation
for signals for various computer vision applications. This
property is leveraged to represent a dense feature like action
bank in the form of sparse dictionaries. These dictionar-
ies are learnt using on-line dictionary learning (ODL) which
further facilitates incorporating new training examples into
existing dictionaries for more robust representation of vari-
ous categories of action as and when required. Evaluation of
the proposed method on realistic action datasets like UCF50
and HMDB51 shows that considering sparse representation
of a dense feature is more suitable for classification than the
feature itself.

Categories and Subject Descriptors

1.5.4 [Pattern Recognition]: Applications—Computer Vi-
ston

Keywords

Action Recognition, Dictionary Learning, Sparse Represen-
tation

1. INTRODUCTION

Action classification is an important tool for comprehen-
sive image and video understanding. Diverse applications
like automated video indexing of huge on-line video reposi-
tories like Youtube, Vimeo etc. to video surveillance systems
in public places can benefit from adapting action classifica-
tion approach for video classification. Actions are single-
person activities such as "walking”, "waving” and ”punch-
ing”. Interactions are human activities that involve two or
more persons and/or objects. The goal of human activity
classification is to automatically analyze ongoing activities
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from an unknown video. In the case where the video con-
tains only one distinct human action, the main task is to
classify the video into one of the different categories of ac-
tion.

Schuldt et al. [23] introduce the KTH dataset which con-
sists of six action categories. Local space-time features are
considered along with Support Vector Machine (SVM) for
classification. In [7], Kliser et al. present histogram of ori-
ented 3D spatio-temporal gradients which is essentially a
collection of quantized 2D histograms collected from each
frame of the video. After extracting the histogram gradient
features from the KTH dataset an SVM classifier is applied
for categorization of the videos. In [22], Savarese et al. use
a global information descriptor known as spatial-temporal
correlograms to encode flexible long range temporal infor-
mation into the spatial-temporal motion features. Spatial-
temporal correlograms are extracted from the KTH dataset
and classification into appropriate classes is done using an
unsupervised generative model.

In [9], Kovashka and Grauman propose the use of local
motion and appearance features to develop a visual vocab-
ulary and then form candidate neighborhoods consisting of
the words associated with nearby points and their orien-
tation with respect to the central interest point. The vo-
cabularies are then combined using multiple kernel learning
method to determine the best possible discriminative means
of comparing videos. The neighborhoods obtained are then
applied to a multi-channel generalized Gaussian kernel SVM
to separate the action classes in KTH .

In [28], Wu et al. present the global Gaussian mixture
model (GMM) for representing all the videos using the rel-
ative coordinate features from all the training videos where
each video is viewed as the normalized parameters of a video-
specific GMM adapted from the global GMM. The learning
algorithm used is machine kernel learning with augmented
features for classification of action classes in KTH. Kuehne
et al. [10] introduce the HMDB51 dataset for action classi-
fication. Features such as HOG, HOF and C2 are extracted
from the videos of all the 51 classes. An radial basis func-
tion kernel SVM is used for classification of these classes.
Sadanand et al. [21] propose creation of an "Action bank”
of videos, which in combination with a linear SVM classifier
is used to classify the KTH and HMDB51 dataset.
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According to Kliper-Gross et al. [8], calculating motion
interchange patterns, based upon the characterization of
change of one motion leading to another, is the best way
to describe a distinct action. In this method, N(=51) linear
SVMs are used for one-vs-all classification of all the classes
in UCF50 and HMDB51 using motion interchange patterns.
Solmaz et al. [25] present the idea of gist, a global video de-
scriptor which essentially computes the 3-D DFT of a given
video clip using 68 3-D Gabor filters placed in 37 and 31
orientations. Then a linear SVM is used for classification of
UCF50 and HMDB51 datasets.

A trajectory based local descriptor TrajMF is proposed by
Jiang et al. [6] which works on top of local feature descrip-
tors like HOG, HOF etc. and captures global and local refer-
ence points to characterize motion information. To classify
the videos in the HMDB51 dataset, a x? kernel SVM is used.
Wang et al. [26] employ the idea of dense trajectories by es-
timating human motion using SURF for each frame of video.
Further improvement in this method results from more ac-
curate camera motion estimation and removing inconsistent
matches due to humans. A radial basis function-xy> SVM
is used for categorization of UCF50 and HMDB51 datasets.
In [27], Wu et al. denote each action class as an event and
assign a latent variable to it. The crucial motion patterns
in each event are then captured using latent models. These
latent models are then applied to three different classfiers
- latent structural SVMs, max-margin hidden conditional
random fields and latent SVMs, separately to classify the
action categories in HMDB51.

Shi et al. [24] introduce sampling strategies for real-time
action classification where each action is sampled using vari-

able sized grids with increasing granularity to capture HOG3D,

HOG, HOF and Motion Boundary Histogram (MBH) fea-
tures from action videos. Dense and random sampling strate-
gies are applied on KTH, UCF50 and HMDB51 datasets and
all the descriptors are combined to obtain effective action
classification on these datasets. Murthy et al. [15] extends
on the work of Wang et al. [26] by removing the trajectories
of background clutter and define the remaining as ordered
trajectories. This results in reduced number of trajectories
per video clip which are also combined from various scales
in space to produce the best representation.

The motivation for this work lies in the fact that the de-
gree of freedom of the various body parts of a person parit-
cipating in an action limits the total number of independent
directions which are required for describing a given action.
This means that even a dense high dimensional feature rep-
resenting an action can represented by a sparse vector while
still maintaining discriminative information. Since, sparse
dictionaries have been shown to be suitable for modeling
high dimensional dense features with relatively low informa-
tion loss it is adapted for use. For large video databases like
UCF50 and HMDB51, the number of training instances for
each class is quite high and whenver, new training instances
are added recomputation of dictionary is computationlly ex-
pensive. ODL builds the dictionary, one training example
at a time and thus can handle large number of training in-
stances with lower computation cost as compared to other
dictionary learning methods.
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2. RELATED WORK

In the field of sparse modeling of human actions, there
have been a few developments recently. Qiu et al. [17] pro-
pose a probabilistic approach for learning sparse dictionaries
for action attributes by maximizing mutual information be-
tween the learned and unlearned attributes. The method
is also used for recognizing unknown actions on the Weiz-
mann[2] and UCF Sports dataset[19]. Peng et al. [16]
present a joint evaluation of feature encoding and dictionary
learning techniques for action recognition. Sparse coding is
shown to be effective as an encoding method on feature de-
scriptors like Histogram of Oriented Gradients (HOG) and
Histogram of Oriented Optical Flow (HOOF) and is also
found to give reasonable performance dictionary learning
methods. However, it was also shown that sparse coding
takes significantly more computation time than other encod-
ing methods on HOG and HOOF descriptors. So, instead a
dense feature describing the whole video as a single feature
vector viz. action bank was chosen to form sparse dictionar-
ies.

In [4] sparse modeling of motion imagery is carried out
to form inter-class and class-specific dictionaries to classify
actions. However, the method is not scalable to a large num-
ber of classes which means action datasets like UCF50 and
HMDB51 cannot be addressed. So, using ODL for form-
ing dictionaries cubrs this problem as we can incrementally
learn dictionaries even from large training datasets with
large number of classes.

2.1 Action Bank Representation of Videos

Action bank is a high-level representation of videos pro-
posed by Sadanand and Corso [21]. This representation
of videos is achieved by applying 73 action detectors on
a video clip. There are 205 action templates having an
average spatial resolution of approximately 50 x 120 pix-
els and a temporal length of 40 — 50 frames contributing
to a 14965 x 1(73 x 205) feature vector of each video clip
under consideration. The templates perform classification
by detection and give a global description of videos. Action
bank produces a single feature vector for an entire video clip
which is quite large (14965x 1) as compared to the number of
video clips per class in any of the standard datasets (= 100).
The resultant matrix is a ”fat” matrix (14965 x 100) giving
an under-determined system where the coefficients that are
to be calculated (14965) are much more than the number
of equations (100). This is the classic setting under which
any sparse dictionary is formed and hence, action bank is
a natural choice. Another alternative is to concatenate fea-
tures obtained from consecutive frames into a single feature
vector. However, in such a case there is high correlation
between the feature dimensions and the resulting dictionary
atoms will not contain very distinctive information.

2.2 K-SVD

Given a set of vectors {v;}i—;, the K-SVD based dictio-
nary learning method [1] finds the dictionary D by solving
the following optimization problem:

(D, ) = arg rgig |V — D®||% subject to ||villo < ToVi,

where 7; represents i*" column of @ , V is the matrix whose
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columns are v;, and Tp is the sparsity parameter. @ rep-
resents sparse representation vectors. Here, ||A||r denotes

the Frobenius norm which is defined as || A||r = , /Zij A2y,

The K-SVD algorithm alternates between sparse coding and
dictionary update steps.

2.3 On-line Dictionary Learning

On-line dictionary learning, which an adaptive version of
dictionary learning is proposed by Mairal et al. [14]. The
sparse stage in ODL is a Cholesky-based implementation of
LARS-lasso algorithm which is the same as K-SVD. How-
ever, in the dictionary update stage, block coordinate de-
scent is used whcih does not require learning rate tuning
and learns one example at a time giving the online nature
akin to on-line stochastic approximations algorithms. More-
over, the dictionary at any time instant t D; is calculated
with D;_; used as a warm restart.

&, =arg min_ ||V — D®||1 + +A[| P
D, q,®

¢

- 1 1 2

Dy = in — —|V—-D®,_ Al|®s

(= asgin 3ol el + A

C determines the number of action classes considered. Fur-
ther improvements are made using mini-batch training, purg-
ing the dictionary of unused atoms and only handling fixed-
size datasets.

3. PROPOSED METHOD

The proposed classification scheme consists of two phases
- training and testing. In the training phase, dictionaries
are constructed for each class and then combined to form
a single dictionary using on-line dictionary learning (ODL).
Testing phase comprises of computing the sparsity of a test
clip with the dictionaries of each class using the ¢;-lasso
distance. The class assigned to the video is the one having
maximum sparsity for the given test clip i.e. minimum /;-
lasso distance. This process is explained in figure 1.

3.1 Sparsity Based Classification

Sparse linear combination of training data acquired from a
dictionary constitutes the representation of test data in the
proposed sparsity based classification scheme using ODL.
Class C = [C1,C,...,CnN] consisting of training samples
(action bank features) available for the given N classes is
constructed. The samples belonging to the same class C; lie
approximately close to each other in a low-dimensional sub-
space. Let the p'* class have K, training samples and the
total number of training samples is denoted by {yfv} where
i = 1,2,...,K; and Ky, K>,...,Kn are training samples
corresponding to classes C1,Ca,...,Cn.

Let b be a input vector belonging to the p” class, then it is
represented as a linear combination of the training samples
belonging to class p.

b= D,®,

where D), is a m x K, dictionary whose columns are the
training samples in the p* class and $,, is a sparse vector for
the same class. The two main steps involved in the proposed
method are :
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Figure 1: Flowchart of the proposed approach

1. Dictionary Construction:  Construct the dictionary
for each class of training features using ODL [14]. Then,
the dictionaries D = [D1,..., Dy] are computed us-
ing the equation.

N
. .1 1 2
(D, @) = arg min — 2—1 FIICi = Di®illz + | @i

where C; = bﬁI;Z, i=1,2,...,N.

2. Classification: In the classification process, the sparse
vector ® for given test feature is found in the test
dataset B = [by,...,b;]. Using the dictionaries of
training samples D = [D1, ..., Dy], the sparse repre-
sentation ® satisfying D®=B is obtained by solving
the following optimization problem:

1 2
©; = argmin S [|bj — D%
subject to || @] < T
and
i = argmax||0;(®;)|1 j=1,---,1

where d; is a characteristic function that selects the co-
efficients for class C;, T represents the sparsity thresh-
old and [ is the number of testing samples. A test
clip b; is assigned to class C; if the absolute sum of
sparsity coefficients associated with the ™ dictionary

is maximum.

4. RESULTS AND DISCUSSION

In this section, we examine the efficacy of the proposed
method on KTH, UCF50 and HMDB51 datasets.A detailed
description of the datasets is presented below:
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4.1 Datasets

KTH: The KTH dataset is a controlled dataset consist-
ing of six human action classes, namely, walking, jogging,
running, boxing, hand waving, and hand clapping. Each
action is performed by 25 subjects in four different scenar-
ios: outdoors, outdoors with scale variation, outdoors with
different clothes and indoors. The background is static and
homogeneous. Since, there is no test-train split for KTH,
from each class % of the clips were chosen for training and
% were chosen for testing.

HMDB51: The HMDB51 dataset is a very large human
action dataset containing 51 action categories, with at least
101 clips for each category. The dataset includes a total
of 6,766 video clips extracted from Movies, the Prelinger
archive, Internet, Youtube and Google videos. Such a vari-
ety of sources which have contributed to this database make
it very realistic and challenging. To make the comparison
with other classification techniques easy, the training and
testing splits have been taken directly from the official web-
site for HMDBS51, wherein each split has 70 training and 30
testing clips for each category of action.

UCF50: The UCF50 dataset introduced by Reddy et
al. [18] consists of 50 realistic human action categories.
The 6000+ videos in the collection cover a variety of hu-
man actions which are collected mainly from youtube. The
videos are divided into 50 classes with 25 groups in each
class wherein each group is a single actor performing the
action, being captured from different camera positions. The
dataset was tested with leave one group out cross validation
as mentioned in [18].

4.2 Results and Discussion

The experiments were conducted using action bank fea-
tures on the three datasets described above with dictionary
sizes of 60, 80, 100, 120, 140 and 160. The best performance
observed for KTH, UCF50 and HMDB51 are 100%, 72.46%
and 80.07%, respectively. The recorded performance is bet-
ter than the state-of-the-art reported for KTH in literature
[21]. In case of HMDB51, the accuracy of the proposed
is significantly higher than the state-of-the-art [26]. This
can be attributed to sparse representation which captures
the distinct signatures i.e. sparsities, for each of the action
classes and dictionary learning which preserves the essence
of human action in the dictionaries learned using the train-
ing samples.

Tables 1, 2 and 3 enumerate the results of various ex-
isting classification schemes applied on KTH, UCF50 and

HMDB51, respectively, in comparison to the proposed method.

In case of KTH, as shown in table 1, the proposed method
gives better performance than the method in [21] where the
action bank features are used in conjunction with SVM. In
table 2, it can be observed that the methods proposed in [24]
and [15] use a combination of different features like HOG,
HOF, MBH etc. to give better classification performance
than the methods which use one feature, say action bank.
However, in table 3, it can be observed that the development
of the dictionaries leads to only a few misclassified examples
in the whole HMDB51 dataset as compared to both ensem-
ble methods in [24] and [15].

214

100.1

100t L] = L]

99.91

99.8

99.71

99.6

classification accuracy

99.51

99.4r

99.3 . . . . . .
40 60 80 100 120 140 160 180

dictionary size

Figure 2: KTH : classification accuracy vs. dictio-
nary size

The method proposed in [21] uses SVM as a classifier for
action bank features. Whereas, we use sparse representation
of action bank features which proves to be more suitable
than directly applying SVM on action bank features. Ac-
tion bank captures all the motion information in the video
clip in 14965 coefficients where only similar actions will have
significant values. This means that the feature is sparse to
start with and hence, can be sparsely coded to greater ef-
fect. Sparsity preserves only the essential coefficients which
capture the action information generated by the actor in the
scene and removes the background information from the dic-
tionary.

4.3 Comparison of performance based on dic-
tionary size

Figures 2, 3 and 4 portray the variation of classification
accuracy in terms of dictionary size for KTH, UCF50 and
HMDB51 datasets, respectively. In case of KTH, the high-
est classification rate is observed for dictionary sizes of 60,
80 and 100 with sparsity set at 20 for each. For HMDB51,
the maximum performance is noted for dictionary size of
100 with sparsity set at 2, after which the performance de-
grades when dictionary size increases. In case of UCF50,
ODL demonstrates most suitable representation leading to
best classification for dictionary size of 120 with sparsity set
at 8. These results show that it is not possible to set sparsity
to any specific value for all datasets even if they correspond
to the same semantic groups i.e. actions in our case.

The performance, as it can be seen from the figures 2, 3
and 4 generally remains constant and deteriorates after a
certain dictionary size for all the datasets considered. This
property can be used to design the optimal dictionary size
by considering performance in terms of accuracy depending
upon the application in question. However, since the size
of dictionary where the performance saturates is not even
same for the three datasets which are related in terms of
content, it is difficult to pinpoint the optimal dictionary size
in advance.

S. CONCLUSION

We have presented an approach for sparse representation
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Table 1: Comparison of classification accuracy on the KTH dataset

Method Features Accuracy (%)
Schuldt et al. [23] Local space-time features 71.7
Klidser et al. [7] Spatio-temporal descriptor 84.3
Savarese et al. [22] Spatial-temporal correlograms 86.8
Ryoo et al. [20] Spatio-temporal local features 91.1
Liu et al. [12] Latent attributes 91.6
Bregonizo et al. [3] Space-time interest points 93.2
Liu et al. [12] Latent attributes 93.8
Le et al. [11] Invariant spatio-temporal features 93.9
Liu and Shah [13] Spatio-temporal 94.3
Gilbert et al. [5] Space-time features 94.5
Kovashka et al. [9] | Space-time feature neighborhood 94.5
Wu et al. [28] Context and Appearance 94.5

distribution features

Sadanand et al. [21] Action bank 98.2
Proposed Action bank 100

Table 2: Comparison of classification accuracy on the UCF50 dataset. (Only the results with leave-one-group-
out validation are considered for comparison)

Method

Features

Accuracy (%)

Kliper-Gross et al. [§] Motion Interchange Patterns 72.6
Solmaz et al. [25] Global video descriptor 73.7
Reddy and Shah [18] MBH 76.9
Shi et al. [24] HOG + HOF + HOG3D + MBH 83.3
Murthy et al. [15] |Trajshape + MBH + HOG + HOF 85.5
Sadanand et al. [21] Action bank 57.9
Proposed Action bank 72.46

Table 3: Comparison of classification accuracy on the HMDB51 dataset.
three-fold validation as mentioned by the authors have been considered for comparison)

Method Features Accuracy (%)
Kuehne et al. [10 HOG/HOF 20.20
Kuehne et al. [10 C2 23.18

Kliper-Gross et al. [§] Motion Interchange Patterns 29.17
Solmaz et al. [25] Global video descriptor 29.20
Jiang et al. [6] Trajectory 40.70
+ Motion reference points
Wang et al. [26] Dense Trajectory 44.75
Murthy et al. [15] |Trajshape + MBH + HOG + HOF 47.3
Shi et al. [24] HOG + HOF + HOG3D + MBH 176
Wu et al. [27] Multi-level features 49.46
Wang et al. [26] Improved Dense Trajectory 57.20
Sadanand et al. [21] Action bank 26.90
Proposed Action bank 80.07
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of dense features for action classification using on-line dictio-
nary learning. The approach was demonstrated using sparse
representation of a dense feature like action bank. Sparse
represenation of action bank as compared to naive action
bank features shows better classification performance un-
der same conditions on three action datasets namely, KTH,
UCF50 and HMDB51. In future, ODL can be utilized for
efficient implementation of action classification systems be-
cause of its ability to incorporate new training data into ex-
isting dictionaries. Also, since the method produces scalable
dictionaries it can be used for a large number of classes with-
out losing discriminatory information. Since, action bank
was just used to demonstrate the effectiveness of sparsity,
any other dense features like 3DHOG and 3DSIFT can also
be explored to the same effect.
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