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Abstract—Crowd counting is the process of counting or
estimating the number of individuals in a crowd. There has been
a rapid surge in the amount of Unmanned Aerial Vehicles (UAV)
images over the last few years. However, efficient crowd counting
techniques from UAV images have hardly come into the focus of
the research community. Crowd counting from UAV images has
its unique challenges compared to crowd counting from images
in natural scenes. Moreover, solving the problem in real-time
makes the task even harder.

In this paper, we introduce an attention-based encoder-
decoder model called Attention-based Real-time CrowdNet
(ARCN). ARCN is a computationally efficient density estimation-
based crowd counting model. It can perform crowd-counting
from UAV images in real-time with high accuracy. Ours is the
first work that proposes a real-time density map estimation
and crowd counting model from drone-based images. The key
idea of our work is to add “Convolution Block Attention
Module” (CBAM) blocks in-between the bottleneck layers of the
MobileCount architecture. The proposed ARCN model achieves
an MAE of 19.9 and MSE of 27.7 on the DroneCrowd dataset.
Also, on NVIDIA GTX 2080 Ti GPU, ARCN has a processing
speed of 48 FPS, making it a real-time technique. The pre-
trained model is available at https://bit.ly/3na7LUy

I. INTRODUCTION

Recent years have seen a tremendous interest in the re-
search on estimating the object count from a complex scene
across an extensive range of domains such as surveillance, mi-
crobiology, crowd management, product counting, and traffic-
flow monitoring. Crowd counting is a method of counting or
enumerating the number of people from an image or video.
Automated techniques of object counting reduce the cost and
perform the task with higher efficiency than manual object
counting methods. Crowd counting can be performed from
either ground images or drone images. Of these, performing
crowd-counting from drone images is of particular signif-
icance. Drone-based crowd counting can be deployed for
mission-critical tasks such as video surveillance to help in
rescue missions from treacherous terrains and public safety
or to estimate the number of people in a pilgrimage or any
other gathering.

Although important, automated crowd counting poses sev-
eral challenges. Firstly, recognizing and counting very small
objects in a crowded environment requires dealing with oc-

clusions. The scale of the objects in remote-sensing and UAV
images is not fixed and varies drastically [1]. Performing
object counting in real-time presents unique challenges. As
per our knowledge, DroneCrowd dataset [2] is the only
public dataset available for estimating the number of people
from UAV-based images. Thus, the availability of inadequate
datasets is a crucial challenge.

With the advent of deep learning, CNN-based models have
been dominating diverse computer vision tasks, and crowd
counting is no exception. Over the past few years, many
CNNs have been proposed for performing crowd-counting.
Some previous works, e.g., MobileCount [3] perform real-
time crowd counting. However, they work on the images cap-
tured from the ground and thus, do not work on drone-based
or remote-sensing images. To the best of our knowledge, only
STANet [2] has paid attention to crowd counting from drone-
based images.

In this paper, we seek to address the challenges mentioned
above by proposing a CNN-based density estimation model
[4], [5]. We propose a network named ARCN, for real-time
crowd-counting from drone images. ARCN is inspired from
MobileCount. Specifically, similar to MobileCount, in the
encoder, ARCN uses a simplified MobileNetV2 which has
fewer convolution layers and smaller feature map resolution.
Also, similar to MobileCount, ARCN uses 4 bottleneck layers
instead of 7 bottlenecks layers and has a 3 x 3 max-pooling
layer of stride 2 before the bottlenecks. Further, similar to
MobileCount, we use RefineNet, which is a light-weight
model, for designing the decoder [6] and a 1x1 convolution
layer as the prediction layer for producing the density map of
the corresponding input image. The key novelty of our work
is to use a CBAM module [7] after each of the bottleneck
layers. This reduces the error values for a negligible increase
in the number of computations and parameters compared to
MobileCount. Still, as we show in Table I, ARCN has the
3rd best performance on the DroneCrowd dataset. Also, it
has one of the lowest parameters and computations among
the state-of-art models for crowd counting. Further, our work
can be extended to various object counting problems such
as estimating the green cover in a region, vehicle counting,
or counting the number of rare animal species from their
colonies.978-1-6654-4175-9/21/$31.00 c©2021 IEEE
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Fig. 1. (a)-(b) Sample Images from Dataset. (a’)-(b’) Corresponding “Ground Truth Density Maps”. (a”)-(b”) Corresponding “density maps” generated by
ARCN.

Figures 1 (a)-(b) show two sample images from the
DroneCrowd dataset along with their visual representations.
We can use this to compare the output density estimation
maps produced by ARCN with the ground truth density
estimation maps. Figures 1(a)-(b) show the original image
from the dataset. Figures 1(a’)-(b’) show the “ground truth
density maps” of the image, while the third column is the
output density map produced by our model ARCN. We can
see that the output density map is quite similar to the ground
truth density estimation map. In the first image, the actual
count of persons is 178, while for the second image the
original number of persons is 156. ARCN outputs the count
as 186 and 158 for the first and second images respectively.
So, even the count of persons is quite similar to the actual
count.

II. BACKGROUND AND RELATED WORK

A. Crowd Counting

The existing crowd counting techniques may be broadly
categorized into three types:

1. Detection-based approaches These approaches use
computer vision-based techniques to detect an entire person or
part of a person in a scene. This is mostly done using a sliding
window detector. Then the total number of detections is
aggregated to get the estimate of people. They are successful
in sparsely-crowded scenes. However, they perform poorly for
highly crowded scenes due to “clutter” and “occlusion”.

2. Regression-based approaches These approaches learn
a mapping from the features extracted from an image patch
to the number of people in the image [8], [9]. They work
in two stages. The first stage extracts local or global features
from the image patch. The second stage uses some regression
technique like linear regression or ridge regression. Due to
this reason, the quality of feature maps produced is adversely
affected, which causes inaccurate results.

3. Density estimation-based approaches Initial works
based on this approach learn to map the features in the local

region to its corresponding “object density maps”. The recent
works [4], [5] have utilized CNN-based approaches to obtain
the density map and then estimate the number of people
from that map. State-of-the-art “crowd counting techniques”
use CNN-based density estimation approaches. Our proposed
ARCN falls under this category.

Crowd counting models can be categorized into two types-
multi-column and single-column. In the multi-column crowd
counting models, there are several columns of CNNs which
are used for the purpose of counting. This is mainly done
to deal with the challenge of varying scales of crowds in
the images. However, there are a few drawbacks to this type
of model. Firstly, their complex network structure increases
the training time. Also, there might be a lot of redundant
information due to the multiple columns of CNN. By contrast,
in the single-column models, there is a single column of CNN
which is usually deeper than those used in the multi-column
models.

B. Convolution Block Attention Module

Attention mechanism helps CNNs to learn and selectively
concentrate on essential parts of the input and ignore irrel-
evant background information in the rest of the input [10],
[11]. In the case of crowd images, useful information is the
instances of people, particularly their heads. A major portion
of remote sensing images may include large buildings, trees,
roads, etc., which need to be ignored by a crowd-counting
engine.

CBAM (“Convolutional Block Attention Module”) [7] con-
sists of a simple 2D-convolutional layer, multi-layer per-
ceptron (in the case of channel attention), and a “sigmoid
function” at last to generate an attention mask over the input
feature map. It takes a CxHxW feature map as an input and
gives an output attention map of dimension CxHxW. Then the
element-wise multiplication of this attention map is performed
with the input feature map to get a more processed and
highlighted output.
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Fig. 2. ARCN network architecture

The attention mechanisms are applied to spatial and chan-
nel dimensions sequentially. A “deep neural network” used
for crowd-counting must have low memory, and computation
overhead [12], so it can run on general-purpose systems and
mobile platforms [13]. Hence, our goal is to keep these
overheads low.

C. Encoder-Decoder

CNNs have made remarkable advances in semantic seg-
mentation. Recent methods use encoder-decoder architecture
to generate pixel-wise segmentation. The encoder produces
low-resolution feature maps, and the decoder restores them
to high-resolution images for pixel-wise predictions.

III. PROPOSED MODEL

We now introduce the architecture of our proposed ARCN.
We also discuss the loss function and ground truth generation
procedure. Note that the choice of the backbone network
for the encoder, decoder, the number of bottleneck layers,
the insertion of max-pooling layer before the bottleneck
layers, and the choice of prediction layer are adopted from
the MobileCount network architecture. The key novelty of
our work is to use a CBAM module [7] after each of the
bottleneck layers.

Figure 2 shows our model architecture. It is based on
encoder-decoder architecture with embedded CBAM modules
in it. The encoder aims to capture semantic or contextual
information, while the decoder is meant to recover spa-
tial information. To keep the parameters and floating point
operations of the model low, we use MobileNetV2 as the
backbone network and further customize it to perform crowd
counting in drone-based images. The MobileNetV2 in the
encoder portion is optimized to make it a mobile-oriented
model to deliver high accuracy while keeping the parameters
and mathematical computations as low as possible. Also,
the reduced number of parameters helps in faster training.
MobileNetV2 has an “inverted residual structure”, and there
are “linear bottlenecks” between layers.

To tackle the different sizes of persons in the image, we
need to incorporate the contextual information at multiple
scales. In our architecture, we use RefineNet for the decoder
network. RefineNet was originally proposed for the purpose

of semantic segmentation by combining the high-level spatial
features with the low-level (detailed) features. This helps re-
duce the computation cost and achieve real-time performance.
Therefore, we choose RefineNet in our architecture. We now
describe each component of ARCN in detail.

A. Feature extraction with CBAM (Encoder)

The model encoder extracts the features from the image and
passes them to the decoder to recover the spatial resolution.
We place attention blocks to solve the complex, cluttered
background problem from the drone-based images. So, the
idea is to make the model ignore the background information
in the images and focus on the regions with crowd or instances
of people. This can be done once the feature maps have been
obtained so that they can be refined using the attention blocks
where spatial and channel attention is applied. Hence, in the
encoder, we place CBAM after each bottleneck, so that the
feature maps produced by the encoder are refined and fed
to the decoder and the next bottleneck. Placing CBAM after
each bottleneck ensures that the channel attention and spatial
attention are preserved across all the encoder stages.

The encoder consists of a 3x3 convolution layer followed
by a 3x3 max pooling layer with a stride of 2 before the bottle-
neck. This makes the model lightweight due to the reduction
in input resolution during the initial stage of the encoder layer.
The idea of having 4 bottleneck layers instead of 7 bottleneck
layers has been taken from MobileCount since they have
experimentally shown that removing the last three bottleneck
layers saves both computation and improves accuracy. After
each bottleneck, we insert an “attention module” to capture
more high-level semantic and contextual information, which
helps remove congested backgrounds to highlight the regions
of the object. The output feature maps of a bottleneck are
fed to the attention module, and the refined features hence
produced are output to the decoder and the next bottleneck.
The detailed architecture of CBAM module is shown in Figure
4.

B. Decoder

In the decoder, the output from the last CBAM block after
the backbone in the encoder propagates through “chained
residual pooling” (CRP) (Figure 3(a)) block. Then, it is fed



MaxPool

5x5

CRP

x4

Conv 1x1

Upsample

Sum

High-res 

feature maps

Low-res 

feature maps

Fusion

Input
Conv 1x1

Relu
Output

Bottleneck

(a) (b)

(c)

Dwise 3x3

Relu
Conv 1x1

Relu

Conv 1x1

Conv 1x1

Fig. 3. a) CRP block and b) Fusion block in decoder c) Bottleneck block of our encoder architecture [6]

Input Features 

Channel Attention
Spatial Attention

Refined 

Features

Channel Refined 

Features 

Conv

layer

~

Spatial Attention Module

[MaxPool, AvgPool]Sigmoid

Max Pool

Shared MLP

~
Avg.Pool

Channel Attention Module 

Mc

Ms

Sigmoid

Ms = Spatial Attention 

Mc = Channel Attention 

Fig. 4. Architecture of CBAM block [7]

into the “fusion block” (Figure 3(b)). The output feature maps
from the previous CBAM blocks are fed into the respective
fusion blocks. The output feature maps from the fusion blocks
are further propagated across multiple CRP and fusion blocks.
This is done to achieve the target resolution.

Fusion Block: The fusion block is a multi-resolution block.
It is used to combine the inputs from the bottleneck of the
encoder and the previous CRP block into a high-resolution
feature map as shown in Fig. 3(b). In the first stage, the
fusion block performs convolutions for adapting to the input
dimension. It outputs feature maps of similar dimensions as
the smallest input dimension. Then it converts the feature
maps of smaller dimensions to the input size having the largest
dimension by up-sampling. Inside the fusion block, the feature
map in both paths convolves with a filter of size 1x1. Finally
the output feature maps from both the paths are fused by
summation.

Chained residual pooling: From the backbone, the last

output feature map with the smallest resolution of 1/32 times
the resolution of the input image propagates through the
CRP block, as shown in Figure 2. The CRP is made of 4
consecutive pooling blocks. The output feature maps of all
pooling blocks and the input feature map are fused. This is
done by adding the residual connections. These features are
then fused together with the help of learnable weights.

C. Prediction Layer

The prediction layer generates density maps by applying
1 x 1 convolution. Then, it uses bilinear interpolation to
upsample the resulting “density map” to the size of the initial
image.

D. Loss Function

Our network transforms the input image to its correspond-
ing “density map” directly. We use the Euclidean distance
to measure divergence between the “ground truth” and the



predicted “density map”. The loss function adopted in this
work is given as follows:

Lden =
1

M

M∑
j=1

∥∥DPM (j))−DGT (j)
∥∥2
2

(1)

Where M is the count of training samples; DGT (j) denotes
the ground truth density maps and DPM (j) represents the
predicted density maps; j denotes the j-th training sample;
‖·‖2 represents the “Euclidean distance”.

E. Ground truth generation

We use the “geometry-adaptive kernels” to tackle the highly
congested scenes, similar to previous works [5]. The ground
truth is generated by blurring each annotated head by applying
a “Gaussian kernel” that is normalized to 1. The geometry-
adaptive kernel is given as:

D(z) =
m∑
j=1

δ(z − zj) ∗Gσj
(z) (2)

where zj , j = 1, ..., m is the location of the j-th head
annotation and δ(·) represents a delta function; σj shows the
variance of the “Gaussian kernel” applied at location j. We
have used σj = 4 in this work.

IV. EXPERIMENTAL RESULTS

We now discuss the evaluated dataset, the implementation
details and adopted evaluation metrics. Then, we compare the
performance of different state-of-the-art “density based crowd
counting” method with our proposed method, named ARCN.

A. Dataset

The DroneCrowd [2] dataset consists of total 33,600
frames from 112 video clips with a resolution of 1920×1080
pixels. The data is taken from different drone-mounted cam-
eras [2]. The images in the dataset cover a wide variety of
scenarios. The DroneCrowd dataset contains 24600 training
images and 9000 testing images. The dataset has a maximum
count of 455 people, a minimum count of 25 people and an
average count of 144.8 people in each image.

B. Implementation details

We use PyTorch framework on an NVIDIA GeForce GTX
2080Ti GPU. We use Adam optimizer with a batch size of 16.
The “weight decay rate” is 1× 10−4 and the “initial learning
rate” is 1× 10−4.

C. Evaluation Metrics

We use “Mean Absolute Error (MAE)” and “Mean Square
Error (MSE)” metrics, defined as:

MAE =
1

M

M∑
i=1

∣∣CPMi − CGTi
∣∣ (3)

MSE =
1

M

M∑
i=1

(CPMi − CGTi )2 (4)

where M is the count of test images; CPMi is the projected
crowd estimate in an image, which is equal to the summation
of all pixels of the density maps. CGTi is the real count
(ground-truth).

D. Results and comparison

We compare our model with several recent models on the
DroneCrowd test dataset. Table I shows the results.

Parameter count: In terms of parameter count, our model
has one of the lowest parameter counts of 3.5M parameters,
which is only more than MCNN and C-MTL and comparable
to the parameter count of MobileCount model. DA-Net, on the
other hand, has the highest number of parameters - 16.47M.

Number of computations: The number of GFLOPs in
ARCN is among the lowest of all the models. The use of
CBAM in ARCN leads to a slight increase in the GFLOPs
compared to that of MobileCount. However, the use of CBAM
also reduces the error rates, which makes it a profitable
trade-off. Overall, ARCN is suitable for deployment on edge
devices.

Accuracy results: ARCN achieves an overall MAE and
MSE of 19.9 and 27.7, respectively. Comparing ARCN
with other state-of-the-art models, the estimation error rates
achieved by ARCN are in the top-3. Only STANet and
CSRNet achieve lower error rates than ARCN. STANet has
the lowest error rates with an MAE and MSE of 16.7 and
19.8, respectively. Also, the error rates of ARCN are almost
comparable to that of CSRNet. However, the number of
computations and the number of trainable parameters for
CSRNet and STANet are several times higher than that of
ARCN. Also, ARCN achieves much higher FPS values than
CSRNet and STANet. Thus, considering a balance of multiple
metrics, our model ARCN may be regarded as the best.
ARCN has a single-column architecture. So it has a simple
architecture that is not only easy to train but also efficient.
This way, ARCN avoids an unnecessary increase in the
number of parameters. The use of CBAM modules in ARCN
enhances the representation power of the already-reduced
number of feature maps coming out of the bottleneck layers.
CBAM allows ARCN to focus on the relevant portions of the
feature maps. This helps ARCN achieve lower error rates as
compared to MobileCount. The high FPS count of ARCN,
along with good error rates and low number of computations
is due to the careful and balanced selection of lightweight
CNN models.

While MCNN achieves a good FPS rate and has the least
number of parameters, its error rates are far higher than
ARCN. MCNN has very less parameters. Also, the number
of large kernels used in MCNN is small. This leads to
lower computational complexity. Therefore, it has a high
FPS count. However, the feature maps produced from the



TABLE I
RESULTS OF VARIOUS STATE-OF-ART MODELS ON THE testing DATASET (EXCEPT FOR FPS, FOR OTHER METRICS, LOWER IS BETTER). (*=VALUE IS NOT

KNOWN) († ON NVIDIA GTX 2080 TI GPU, ALL OTHER FPS RESULTS ARE ON NVIDIA GTX 1080TI GPU)

Method Type of Architecture #Parameters #GFLOPs FPS (Batch Size = 1) Errors
MAE MSE

STANet [2] Single-column 10.01M 765 2.74 16.7 19.8
CSRNet [4] Single-column 16.26M 857.84 3.92 19.8 25.6

ARCN (ours) Single-column 3.5M 16.51 48.07 † 19.9 27.7
MobileCount [3] Single-column 3.4M 16.49 70.42 † 22.4 28.8

MCNN [5] Multi-column 0.13M 56.21 28.98 34.7 42.5
DA-Net [14] Single-column 16.47M 648 2.52 36.5 47.3
ACSCP [15] Multi-column 5.1M * 1.58 48.1 60.2
C-MTL [16] Multi-column 2.45M 238.4 2.31 56.7 65.9
MSCNN [17] Single-column 2.9M * 1.76 58 75.2

SwitchCNN [18] Multi-column 15.11M * 0.014 66.5 77.8
LCFCN [19] Single-column * * 3.08 136.9 150.6
AMDCN [20] Multi-column * * 0.16 165.6 167.7

shallow columns of MCNN are fused late. The weighted
average method used to perform late fusion cannot distinguish
between the density of crowd in different portions of a single
image. Hence, it gives higher error rates.

Table II shows the effect of batch size on the processing
speed of ARCN model. We can see that as we increase the
batch size to 16, the inference speed increases.

TABLE II
FPS COUNTS WITH VARYING BATCH SIZES

Batch Size FPS
2 57.8
4 64.1
8 66.6
16 68.02

V. CONCLUSION

We have proposed a network called ARCN for real-time
“crowd counting” from drone images. Our model has a
light-weight encoder-decoder attention-based architecture. On
DroneCrowd dataset, we obtain 3rd best performance on the
dataset. With low parameters and a high FPS, our model
achieves state-of-the-art in real-time crowd counting from
drone images. We hope that ARCN model can be used with
remote sensing images also.
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