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Abstract-Feature descriptors involved in video processing are 

generally high dimensional in nature. Even though the extracted 
features are high dimensional, many a times the task at hand 
depends only on a small subset of these features. For example, 
if two actions like running and walking have to be identified, 
extracting features related to the leg movement of the person 
is enough. Since, this subset is not known apriori, we tend to 
use all the features, irrespective of the complexity of the task 
at hand. Selecting task-aware features may not only improve 
the efficiency but also the accuracy of the system. In this work, 
we propose a supervised approach for task-aware selection of 
features using Deep Neural Networks (DNN) in the context of 
action recognition. The activation potentials contributed by each 
of the individual input dimensions at the first hidden layer are 
used for selecting the most appropriate features. The selected 
features are found to give better classification performance than 
the original high-dimensional features. It is also shown that the 
classification performance of the proposed feature selection tech­
nique is superior to the low-dimensional representation obtained 
by principal component analysis (peA). 

Keywords. Supervised Feature Selection, Deep Neural 
Networks, Action Recognition 

I. INTRODUCTION 

Understanding human actions in videos is challenging be­
cause of high variability in temporal scale, complexity of artic­
ulated motion and high degree of freedom in movements. Even 
for identifying a small number of actions, it is rather difficult 
to accurately represent action information with a small set of 
features. Features are either extracted from individual frames 
[1] or from entire videos [2] . Among them, one of the most 
successful [3] feature descriptors is improved dense trajectory 
(IDT) [4] which is a concatenation of well known features 
like Histogram of Oriented Gradients (HOG) [5] , Histogram 
of Oriented Optical Flow (HOOF) [1] etc. However, high 
dimensional representations like IDT (426 D) could contain 
redundant dimensions which may not be necessary for classi­
fication of all kinds of actions. Therefore, based on the nature 
of the task at hand (actions classes), dimensionality of such 
representations can be reduced without affecting classification 
performance. For experimental verification of the same, a DNN 
with high dimensional input was built for action classification. 
A smaller network formed with these selected features can be 
used in portable devices with modest processing and memory 
requirements. Further, the entire network can be stored in-place 
in the memory leading to speedup [6] . 

A. Related Work 

Majority of the methods for reducing network complexity 
rely on pruning non-essential weights [7] -[9] in intermediate 
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layers or reducing input dimensionality [10]-[13] . The basic 
objective of network pruning is to obtain a sparse network 
which can be trained with low computational complexity. 
Weight pruning is carried out either by setting those weights to 
0, which when perturbed, lead to no change in error rate [13] or 
by penalizing the cost function during back-propagation [14] , 
[15] , [8] , [16] , [17] so that the unnecessary weights are driven 
to O. However, these network pruning methods as described in 
[10] and [18] require extensive analysis of hidden layers which 
is difficult in case of DNN with high dimensional inputs. 

DNNs have always been hard to train especially when the 
input dimension is very high. There have been a number of 
attempts to address this issue. In [19] , Denil et al. show that 
given a few weights for each feature, it is possible to not 
only predict all the other weights but also eliminate some of 
the weights. It is shown for multi-layer perceptrons, learning 
25% of the parameters achieves the same error as learning 
all the weights. Sainath et al. [20] reduce the number of 
parameters in the last layer of a DNN using low-rank matrix 
factorization. The softmax layer generally used at the last layer 
for classification is more suitable for low-rank factorization 
but on other layers error rate increases with low-rank structure 
imposed. Moreover, last layer method was shown to be suitable 
for networks with large number of output classes (2200, 5999). 

One of the most popular methods for training large DNNs 
effectively is using maxout activation function [21] which es­
sentially outputs the maximum of all inputs and is a piecewise 
linear approximation to an arbitrary convex function. While 
it generally leads to a lower complexity in networks with 
reduced parameters compared to rectifier networks, to be truly 
effective on real datasets pre-processing in the form of cross­
channel pooling is necessary to achieve good performance. 
However, no such preprocessing is required for the proposed 
feature selection method and still a reduction in the number 
of parameters can be achieved. 

In the proposed method we select important features by 
analyzing the first layer activation potentials of a DNN clas­
sifier. The method is completely supervised with emphasis on 
the discrimination potential of features. This is a departure 
from unsupervised dimensionality reduction methods like PCA 
where emphasis is on best representation and reconstruction. 

The rest of the paper is organized as follows. Section 2 
describes reveals the baseline system for evaluating the perfor­
mance of DNNs on action recognition. Section 3 describes the 
methodology behind the feature selection method. In section 4 
the results and subsequent implications are shown and finally 
in section 5, the conclusions on the proposed method are 
presented. 
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II. BASELINE SY STEM FOR ACTION RECOGNITION 

Action recognition in videos is gradually becoming promi­
nent in the field of computer vision and machine learning, with 
important applications like surveillance, human behaviour un­
derstanding etc. Finding a task-aware representation of videos 
for reliable action recognition is quite challenging and this 
paper aims to address this concern. 

A. KTH Dataset 

The KTH dataset [22] is a controlled dataset consisting of 
six human action classes, namely, walking, jogging, running, 
boxing, hand waving, and hand clapping. Each action is 
performed by 25 subjects in four different scenarios: outdoors, 
outdoors with scale variation, outdoors with different clothes 
and indoors. Each video clip is roughly 4 seconds in duration 
shot with a frame rate of 25 fps. With 100 videos each for an 
action, KTH is commonly used to benchmark any algorithm 
on action recognition as it has sufficient examples for training 
data-intensive models like DNNs with the added simplicity 
of no occlusion and minimum background noise. Since, no 
official splits are provided, a split of 70 - 10 - 20 for train­
validation-test was used in the experiments. 

B. Dense Trajectory features 

Improved Dense Trajectory Features (IDT) describe human 
actions in a video by tracking the movement of particles in a 
neighborhood. It was shown to be the explicit feature ensemble 
for action recognition and is easily scalable to large number of 
classes. In a nutshell, each feature vector defines the path of a 
particle, in this case a pixel, in a restricted neighborhood for a 
finite number of frames. The dimension of the feature vector 
is 426 for each tracked point with heavy overlap to ensure full 
coverage of the motion. It completely conveys the information 
about the absolute movement, position, relative movement of 
the particle. 

• 

• 

• 

Trajectory: The first 30 dimensions depict the change 
in position of the particle measured over 15 frames 
and are known as the dense trajectory points. They 
are extracted over a neighborhood of 2 x 2 x 3 where 
the first two dimensions denote spatial proximity and 
the third denotes temporal proximity to the pixel 
being tracked. An example of the trajectory points for 
running is shown in figure 1. 

HOG: The next 108 dimensions depict HOG features 
which localize the location of the particle in relation to 
the video frame. HOG have been shown to be excellent 
human detectors [5] and describe a particle as a mea­
sure of the dominant gradients in its neighborhood. In 
figure 2, the HOG features detected for a person in a 
frame while clapping and walking are shown. In case 
of a particle, the HOG feature describe the dominant 
shape of the particle like the shoulder or hands. 

HOOF: HOOF features [1] form the next 96 dimen­
sions. HOOF is generally a description of movement 
of a particle in subsequent frames where a small 
neighborhood (3 x 3 or 5 x 5) is considered, to 
determine the direction and movement of the particle. 
Also, due to the change in scale of the actions a 

Fig. 1. Dense Trajectory features for two instances of running 

(a) (b) 

Fig. 2. HOG features calculated on (a) running and (b) clapping. Notice that 
the gradients align along the outline of the body. 

• 

Fig. 3. 

pyramidal approach is considered. For instance, in 
figure 3 the optical flow or HOOF features are shown 
for running and hand waving actions. Note that in 
case the background is static, as in this case, HOOF 
portrays the motion signature as in the hand motion for 
hand waving and the entire body motion for running. 
The difference between HOOF and dense trajectory 
stems from the fact that HOOF tracks the movement 
of all pixel neighborhoods whereas dense trajectory 
only tracks the movement of particles which remain 
in their neighborhood during the entire duration of 15 
frames. 

MBH: The last two features considered are Motion 
Boundary Histograms (MBH) in both horizontal and 
vertical direction denoted as MBHx and MBHy (96 
dimensions each) which quantify the relative motion 
between two particles in both the vertical and horizon­
tal direction. This feature is mainly used to reduce the 
contribution of camera motion to optical flow features 
and stabilizes the optical flow features. 

(a) (b) 

HOOF features calculated on (a) running and (b) hand waving 
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TABLE I. PERFORMANCE OF BASELINE NEURAL NETWORK ON KTH 
DATASET 

C. Baseline Neural Network 

The architecture for the DNNs used for action recognition 
consist of 1 (426L - 1000R - 65),  2 (426L - 1000R -
1000R - 65) and 3 (426L - 1000R - 1000R - 1000R - 65) 
hidden layers trained in pylearn2 library [23] . The entire 
experiment was carried out by employing discriminative pre­
training [24] where each hidden layer was subject to a dropout 
[25] probability of 0.4. Learning rate was adjusted based 
on the network performance on the validation data. For the 
3 networks reported above, the classification performance is 
reported in table I. Inquiries were made on whether all the 
input dimensions participated equally in classification and if 
so, what was the extent of the participation. The level of 
contribution would determine the usefulness of that dimension. 
Further, only a few useful dimensions could replicate the 
performance of the entire network and maybe even better it. 
This led to the identification of significant features and the 
effect they have on both on the original network and their 
performance, in isolation for a less-complex DNN. 

III. FEATURE SELECTION 

The main idea behind the proposed approach is to analyze 
the contribution of each of the input dimensions to identify 
the features (inputs) important for classification. Typically 
sensitivity analysis [26] is used to show the importance of in­
dividual input dimensions on output by perturbing the weights 
connected to the input. The upper bound on the sensitivity for 
any layer of a multi-layer perceptron network determines the 
optimal number of neurons required in the network. However 
for ReLU, such analysis is often not required as the neurons 
which are inactive may not get trained at all [27] . For a 
DNN, sensitivity analysis does not work well beyond 1 or 
2 layers. Hence, to correctly analyze the contribution of an 
input feature, we study its activation potential (averaged over 
all training values of the input and hidden neurons) relative 
to the total activation potential. The higher the activation 
potential contribution of an input dimension, the more likely is 
its participation in hidden neuronal activity and consequently, 
classification. 

A. Activation Potential analysis 

The activation potential of the first layer of the baseline 
neural network (with 3 hidden layers) were analyzed for 
selecting the important features. The output of the lh neuron 
at the 1 st layer is: 

(1) 

where aj is the activation potential of lh hidden neuron, 
computed as: 

(2) 

where Wj is the weight vector connecting lh hidden neuron, 
x is the input vector and bj is the bias applied to the neuron. 

4.5'�-�-�-�-�-----;:===O:=::;=;:;==il 
I -SOftPIUSI .--- ReLU . 

3.5 

2.5 

1.5 

0.5 I I 

I I 

I I 

I I 

, I 

o��==�-�-���-�-�-� -4 -3 -2 -1 

Fig. 4. ReLU and SoftPlus functions 

ReLU is typically approximated with a softplus function shown 
in fig. 4. 

50ftPlus: fs(aj) = 10g(1 + eai ) (3) 

For Xi, i.e. the ith dimension of the input example x 
connected to lh hidden neuron by Wji, the activation potential 
is calculated as: 

(4) 

The average absolute activation potential contributed by the ith 
dimension of M training examples x(1), x(2), ... , x(k) ... , x(M) 
connected to lh hidden neuron is given by: 

M 
Pij = � L la�;)1 (5) 

k=1 
where k represents kth training example x(k). The absolute 
value is taken to penalize large negative weights for adversely 
contributing to the activation of the neurons. 

The relative contribution ith input dimension towards the 
activation potential of lh hidden neuron is calculated as: 

aij 
Ci = (6) J ""Ninp 

L...-i=1 Pij 
where Ninp is the dimension of input example x. The net 
positive contribution ct of an input dimension i over all hidden 
neurons is given as: 

Nhid 
ct = L fR(Cij) 

j=1 
(7) 

where Nhid is the number of neurons in the first hidden layer. 

Since, the entire network is built on ReLU units the visible­
hidden pair (i, j), negative Cij can be set to 0 to show that ith 
input dimension does not contribute to the activation of lh 
hidden neuron. The same fact can also be used in selecting 
significant features. If we observe each of the input features in 
isolation and its net positive contribution to the activation of the 
neurons ct , it can be concluded that the features with highest 
ct are more likely to instigate the neurons to participate in 
classification. 

The activation potential was analyzed for the first hidden 
layer of 426L - 1000R - 1000R - 1000R -65 network since 
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Fig. 5. Net positive contribution due to each of the input dimensions in 
sorted order. 

direct correlation between inputs and pre-activation can be 
established only in this layer. In figure 5, the input features are 
sorted in decreasing order of ct to highlight the big change 
in activation potential contribution. Upon closer inspection, 
roughly after 30 features there is a big dip in the contribution. 
Taken as an ensemble, the top 30 features have contributions 
c + which is almost 3 times the activation potential of the 
e�semble of the next 200-odd features according to the de­
creasing order of activation potential. This shows that these 
features contribute heavily to classification in the network and 
bring about most of the neural interactions. Then there is a 
pronounced decline in the activation potential and hence, the 
network with first 100 features does not show any improvement 
in classification. After about 300 features, there is a gradual 
gradient and contribution of the last 30 features is almost 
negligible as compared to the top 30. It was observed that the 
behaviour of c + is almost similar for both I-layer and 3-layer 
networks, indi�ating the importance of the selected features. 

IV. RESULTS AND DISCUSSION 

In order to validate our hypothesis about the importance 
of features with higher action potential, the top 30 features 
recovered from the average pre-activation dynamics study were 
then tested in a neural network 30L -lOOR -6S with roughly 
the same dropout as in the baseline neural network. The 
classification results are presented in table II. It is interesting 
to note that classification performance indeed improves on 
the network with far fewer parameters. In the I-hidden layer 
network there is an improvement of about 2% and the gap 
widens to almost 4% as the network grows to 3-hidden layers. 
However, it is important that these top features can be obtained 
after a thorough analysis of only a I-hidden layer baseline 
network. 

The confusion matrices depicted in figure 6 show the 
classification results on each class for 1, 2 and 3 hidden layer 
networks. It can be seen that the misclassification is mainly 
caused among classes which look alike like running, walking 
and jogging. At the video level, the assigned label is measured 

TABLE II. PERFORMANCE OF DNN WITH Top-30 FEATURES ON KTH 
DATASET 

Feature 

Top-30 features 

TABLE III. AVERAGE RUNTIME PERFORMANCE PER EPOCH OF THE 
Top-30 AND ORIGINAL NETWORK ON KTH DATASET 

Feature Criteria Number of hidden layers 
I 2 3 

Top-30 features Runtime (in sec.) 78 86 115 

Parameters 3600 13600 23600 

lDT (426 D) Runtime (in sec.) 253 492 1008 

Parameters 432000 1432000 2432000 

as the majority of the frame labels obtained from the network. 
Classification performance of 90.75%, 92.43%, 98.31 % are 
reported for 1, 2 and 3 hidden layer networks with top 30 
features. The last network improves the classification results 
presented on KTH in [2] with action bank features. 

Further comparison between top 30 components chosen 
by principal component analysis (PCA) and by the proposed 
feature selection method are shown in table IV. The proposed 
approach produces a 3-hidden layer 30L - lOOR - lOOR -
100R - 6S network with better classification performance. 
Also, classification performance of top-lOO features and the 
last-30 features according to the proposed scheme are also 
presented. The top 100 features show no improvement over the 
original network whereas the last-30 features perform worse. 
Also, according to the t-sne [28] visualization of feature points 
presented in fig. 7, it can also be seen that the most confusing 
classes viz. jogging and running are better separated for the 
top 30 features as compared to the next 30 or last 30 features. 

A. Runtime analysis 

Feature selection on a 3-hidden layer 426L - 1000R -
1000R - 1000R - 6S original network to a less complex 
30L -lOOR -lOOR -lOOR - 6S network reduces the number 
of parameters to a mere 1 % of the original. The machine of 
choice was a GPU server with 64 GB memory, 6 NVIDIA 
Tesla K20Xm GPUs with 6 GB memory each and an Intel 
Xeon 32-core processor. The runtime characteristics of both 
networks are recorded in table III. We show that even from 
a I-hidden layer network onwards, the network with lower 
complexity performs better than the original network with 
a fraction of the training time as the original network. The 
number of parameters is mainly responsible for this huge 
decrease in average training time per epoch. It is worth noting 
that even a I-hidden layer network with the original 426 input 
dimensions trains slower than a 3-hidden layer top-30 network 

TABLE IV. CLASSIFICATION PERFORMANCE COMPARISON OF 
DIFFERENT NETWORKS WITH INPUT FEATURES CHOSEN WITH FEATURE 

SELECTION AND PCA ON KTH DATASET 

Features Classification Performance 
(3 layers) 

Feature Select -Top30 93.93 

PCA-Top30 79.22 

Feature Select-ToplOO 89.57 

Feature Select-Last30 70.41 
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Fig. 6. Confusion matrices for the top-30 dimensions on the KTH dataset 
(clip-wise) (a) 1 hidden layer (b) 2 hidden layers (c) 3 hidden layers 

by a factor of 1/2 and the new network shows a 10% increase 
in terms of classification accuracy. 

V. CONCLUSION 

Selection of the right features for action classification 
in videos is extremely challenging. There are lot of feature 
descriptors available today that produce high dimensional 
features to describe the activity in the video but to quantify 
the effect of these features on classification requires extensive 
analysis. While dimension reduction techniques are available 
to reduce feature dimensions, their primary focus is good 
reconstruction and the discriminative information be lost in 
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Fig. 7. t-sne visualization of confusing classes: jogging and running. (a) 
Feature Select-Top30 (b) Feature Select-31-60 (c) Feature Select-Last30 

low dimensional space. Moreover, the aim of these methods 
is projection rather than selection which is the focus of the 
proposed method. To this effect, a supervised selection of 
features is proposed using a neural network to achieve better or 
comparable classification performance. Runtime gains are also 
obtained as the result of the reduced number of parameters. 
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