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Abstract

The capability of the self-attention mechanism to model

the long-range dependencies has catapulted its deploy-

ment in vision models. Unlike convolution operators, self-

attention offers infinite receptive field and enables compute-

efficient modeling of global dependencies. However, the

existing state-of-the-art attention mechanisms incur high

compute and/or parameter overheads, and hence unfit for

compact convolutional neural networks (CNNs). In this

work, we propose a simple yet effective “Ultra-Lightweight

Subspace Attention Mechanism” (ULSAM), which infers

different attention maps for each feature map subspace. We

argue that leaning separate attention maps for each feature

subspace enables multi-scale and multi-frequency feature

representation, which is more desirable for fine-grained im-

age classification. Our method of subspace attention is or-

thogonal and complementary to the existing state-of-the-

arts attention mechanisms used in vision models. ULSAM

is end-to-end trainable and can be deployed as a plug-and-

play module in the pre-existing compact CNNs. Notably,

our work is the first attempt that uses a subspace attention

mechanism to increase the efficiency of compact CNNs. To

show the efficacy of ULSAM, we perform experiments with

MobileNet-V1 and MobileNet-V2 as backbone architectures

on ImageNet-1K and three fine-grained image classification

datasets. We achieve ≈13% and ≈25% reduction in both

the FLOPs and parameter counts of MobileNet-V2 with a

0.27% and more than 1% improvement in top-1 accuracy

on the ImageNet-1K and fine-grained image classification

datasets (respectively). Code and trained models are avail-

able at https://github.com/Nandan91/ULSAM .

∗The first two authors contributed equally to this work.
†Corresponding author.

1. Introduction

Convolutional neural networks (CNNs) have achieved

remarkable predictive performance in various cognitive and

learning tasks [11, 43, 12, 32, 18]. The unprecedented pre-

dictive performance of CNNs stems from the rich repre-

sentational power of CNNs, which in turn stems from the

deeper and wider layers in networks. Deeper and wider lay-

ers enhance the expressiveness and discrimination ability

of the network by circumventing the inherent limitations of

convolution operators, viz., locality [7] and linearity [20].

The locality of the seminal operator, convolution, in

CNNs offers a theoretical guarantee, unlike the shallow

networks, to avoid the curse of dimensionality while ap-

proximating the hierarchically local compositional func-

tions [27, 22]. Since convolution in CNN capture the lo-

cal (e.g., 3 × 3) feature correlations [19], multiple con-

volution operators are stacked together to enlarge the ef-

fective receptive field size and capture the long-range de-

pendencies [7]. However, this makes the CNNs deeper.

Further, since the linearity of convolution operation leads

to inefficient capturing of the non-linear abstractions in in-

put data [20], CNNs employ a higher number of filters per

layer, which are learned to capture all the possible variations

of complex latent concept [20]. However, this makes the

CNNs wider. Deeper and wider layers in CNNs [12, 43, 13]

leads to a high computational cost (measured in the num-

ber of floating-point operations or FLOPs) and a large num-

ber of parameters which makes deployment of CNNs on

resources-constrained platforms quite challenging.

The compact CNNs such as MobileNets [14, 30] and

ShuffleNets [48, 21] seek to reduce the computational cost

significantly by employing depthwise separable (DWS)

convolution. Similarly, the dilated convolution has been

employed to enlarge the receptive field size in vision tasks

[45]. However, the inefficiencies of convolution operators
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still exist, and the network learns complex cross channel

inter-dependencies in a computationally-inefficient manner.

The success of self-attention in natural language pro-

cessing [36] in modeling the long-range dependencies has

enabled its inclusion as a computation primitive in vision

models [28, 1, 7]. Self-attention efficiently captures the

global dependencies of features in feature space and cir-

cumvents the inherent limitations of convolution operators

in CNNs. However, the higher parameters and/or compu-

tation overheads of these attention mechanisms (Table 1)

are undesirable for in compact CNNs. Since redundancy

in the parameter space of compact CNNs is low, the desir-

able attention mechanism for compact CNNs should have

the capability to capture the global correlation (fusing se-

mantic and spatial information) more effectively and effi-

ciently compared to the existing attention mechanism.

In this work, we propose the “Ultra-Lightweight sub-

space attention module” (ULSAM), a novel attention block

for compact CNNs (Figure 1). ULSAM learns different at-

tention maps for each feature map subspace and reduces

the spatial and channel redundancy in feature maps of com-

pact CNNs. Also, learning different attention maps for each

subspace enables multi-scale and multi-frequency feature

representation, which is desirable, especially for the fine-

grained image classification tasks. To the best of our knowl-

edge, ULSAM is the first attention module which enables

efficient (compute and parameter) learning of cross channel

inter-dependencies in each subspace of feature maps.

Subspace Attention Module

Gather
Input OutputBroadcast

Gather Broadcast

Figure 1. A block diagram of ULSAM

Our key contributions are summarized as follows:

• We propose a novel attention block (ULSAM) for

compact CNNs, which learns individual attention

maps for each feature subspace and enables compute-

efficient learning of cross-channel information along

with multi-scale and multi-frequency feature learning.

• We show the effectiveness of our block (ULSAM)

through extensive experiments with MobileNet-V1

and MobileNet-V2 on ImageNet-1K as well as three

fine-grained image classification datasets.

• We demonstrate the scalability and efficacy of UL-

SAM with fewer parameters and computations on

MobileNet-V1 and MobileNet-V2 with ImageNet-1K

and fine-grained datasets.

2. Background and Related Work

This section describes various design techniques, along

with their limitations, which have been incorporated in

CNNs to reduce the number of FLOPs. Further, we brief

state-of-the-art attention mechanisms employed in vision

models for reducing the FLOPs and parameter counts by

virtue of feature re-distribution in the feature space. We

show the overhead, in terms of FLOPs and parameters

counts, of these attention mechanisms along with our pro-

posed module, ULSAM, in Table 1.

2.1. Computational Cost of Convolution in CNNs

The computational cost (in FLOPs) of standard convolu-

tion (SConv) and FC layers of filter size sk×sk is shown in

Eq. 1 , where m and n are the number of input feature maps

and output feature maps (respectively) of spatial size h×w.

Note that the FC layer is a special case of the convolution

layer where the filter size is equal to the input feature map

size, and hence, the size of output feature maps size in the

FC layer is 1× 1.

FLOPs in SConv = sk × sk ×m× n× h× w (1)

In state-of-the-art CNNs [30, 14, 12], m and n are in

the order of thousands (in deeper layers of CNNs) hence,

the value of m× n is substantially large. In Eq. 1, the term

m×n coupled with sk×sk stems from the combined feature

extraction and feature aggregation in SConv. To reduce the

computational cost depthwise separable (DWS) convolution

[30, 14, 9] has been deployed which decouples the m × n

with sk × sk by decomposing the standard convolution into

depthwise convolution (feature extraction) and pointwise

convolution (feature aggregation). Depthwise convolution

reduces redundancy in the channel extent and breaks the

fully connected pattern between input and output feature.

Similarly, pointwise convolution reduces the redundancy in

the spatial extent. The computational cost of DWS convolu-

tion is sk×sk×m×h×w (depthwise conv) + m×n×h×w

(pointwise conv). This decomposition in DWS convolu-

tion reduces the computations significantly; however, due

to the m × n term in pointwise convolution, the computa-

tions in DWS convolution are dominated by the pointwise

convolution. For example, in MobileNet-V1 [14], pointwise

convolution accounts for 94.86% of the total FLOPs while

depthwise convolution accounts for only 3.06% of the total

FLOPs.

To reduce the computation overhead of pointwise convo-

lution, ShuffleNet [48] employs group convolution on 1× 1
layers. In group convolution, input feature maps are di-

vided into mutually exclusive groups, and each group in-

dependently convolves with sk × sk filters and breaks the

fully-connected patterns among input and output features
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Table 1. Compute and parameter overheads of different attention modules. These overheads are compared with our proposed attention

module “ULSAM” (assuming m = 512, t = m

8
, r = 16, h× w = 14× 14, and dilation rate is 4 in BAM [25]).

Attention module
subspace

attention
MLP

costlier

1× 1
conv

#Params #FLOPs #Params

(×103)

#FLOPs

(×106)

#Params

(norm.)
#FLOPs

(norm.)
Non-local [39] × × X 2m2 2m2hw 524 102.76 512× 512×
A2 - Net [7] × × X 2mt 2mthw 66 12.85 64× 64×

SE-Net [15] × X × 2m2

r
2m2

r
33 0.03 33× 0.16×

BAM [25] × X X
4m2

r
+ 18m2

r2
2m2

r
+ ( 4m

2

r
+ 18m2

r2
)hw 84 16.49 82× 82.16×

CBAM [42] × X × 2m2

r
+ 98 2m2

r
+ 98hw 33 0.05 33× 0.26×

ULSAM (ours) X × × 2m 2mhw 1 0.2 1× 1×

maps. This reduces the number of computations; however,

the stacking of multiple group convolution layers prohibits

the cross-group interaction and leads to a drop in perfor-

mance [48]. To tackle this issue, ShuffleNet employs the

channel shuffling mechanism after the group convolution

layer. However, the channel shuffling does not scale with

a larger number of groups, and with an increasing num-

ber of groups, channel shuffling gives diminishing returns

[48]. Also, channel shuffling is naive and context-unaware,

and hence, the limitations of group convolution are not ad-

equately mitigated.

ULSAM employs attention mechanism and enables

compute-efficient interaction of cross-channel information

where only one 1 × 1 filter is used after depthwise convo-

lution, i.e., n =1 and there is no m × n term in the compu-

tation. Therefore, ULSAM decomposes the dense connec-

tions among input and output feature maps without incur-

ring the limitations of group convolution and computation

overhead of pointwise convolution.

2.2. Attention Mechanisms for Vision Models

In guided cognition tasks, attention is a way to assign dif-

ferent importance to different parts of the input data, which

enables the networks to pick the salient information from

the noisy data [44, 41]. Attention can be broadly catego-

rized into two categories viz. implicit attention and explicit

attention. During the training, CNNs naturally learn a form

of implicit attention where the neurons in CNN respond dif-

ferently to different parts of input data [24, 23, 47].

Recently, there has been a growing interest in incorporat-

ing explicit attention into CNNs for vision-related tasks. Xu

et al. [44] and Chen et al. [5] use attention mechanism to

generate captions from the images. Wang et al. [37] propose

a residual attention network by stacking multiple attention

modules to generate attention-aware features. Several other

recent works incorporate explicit attention mechanisms to

improve the computational efficiency and feature distribu-

tion in feature space and improve the efficiency of CNNs.

Wang et al. [39] proposed non-local operation, which is a

generalized form of self-attention [36], to boost the perfor-

mance in video recognition tasks. Chen et al. [7] introduced

a double attention block that captures the long-range depen-

dencies by gathering and distributing features in the entire

feature space. Park et al. [25] proposed the “Bottleneck At-

tention Module” (BAM), which employed a multi-layer per-

ceptron (MLP) for channel-wise feature aggregation and di-

lated convolution for efficiently extracting the spatial infor-

mation. Woo et al. [42] introduced the “convolution block

attention module” (CBAM), which exploits both spatial and

channel-wise feature correlation using attention mechanism

to improve the representational power of CNNs. SE-Net

[15] employed MLP, which re-calibrates the feature maps

through squeeze and excitation operations.

To show the efficacy of the aforementioned attention

mechanism for compact CNNs, we calculate the compu-

tation (FLOPs) and parameter (Params) overhead of de-

ploying these attention mechanisms in CNNs (Table 1). In

Table 1, t is the number of attention maps in A2 - Net

and r is the reduction ratio (hyper-parameter) for MLP in

BAM, CBAM, and SE-Net. As shown in Table 1, the ex-

isting attention mechanisms incur high computational over-

head (due to costlier 1 × 1 convolution used for generat-

ing attention maps) and/or parameter overhead (due to the

parameter-heavy MLP). On the contrary, ULSAM uses only

one 1× 1 filter and exploits the linear relationship between

feature maps and avoids the use of MLP.

3. Proposed Method

The expressiveness of the self-attention layer with a suf-

ficient number of attention heads and relative positional en-

coding is higher than that of the convolution layer [10].

However, the large number of attention heads can lead to

high compute and parameter overheads, especially in the

initial layers of CNNs, where the dimensions of feature

maps are high. For example, to replace a convolution layer

with 7 × 7 filters (in the initial layer) with a self-attention

layer, at least 49 attention heads need to be deployed [10].

3.1. Design Optimization in ULSAM

In ULSAM, we use only one attention map for each fea-

ture subspace. Further, unlike [7] and [39], we use depth-

wise convolution in the initial step and only one filter in
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Figure 2. ULSAM divides the input feature maps into g mutually exclusive groups where each group contains G feature maps.

pointwise convolution in the later step of generating the at-

tention maps. This reduces the computations substantially

and makes ULSAM suitable for compact CNNs.

Multi-scale feature representation: Multi-scale feature

learning helps in understanding the context of the image,

especially in a multi-object environment, and improve the

representational power of networks [11, 4, 38]. Moreover,

multi-scale feature learning enables the network to encode

the positional information in an efficient manner, which is

desirable for position-dependent vision tasks such as se-

mantic segmentation [16]. Compared to employing the fil-

ters of different receptive size (for eg., InceptionNet variants

[33, 35, 34]), dividing the feature maps into stages (feature

map subspace) and applying different convolution for each

stage is an efficient way of generating the multi-scale fea-

tures which improve the effective receptive size of the net-

works [11]. Moreover, the predictive performance of net-

work increases with the increasing number of stages in fea-

ture map, and hence, compared to increasing depth, width,

cardinality, stages in feature maps is a more effective way to

boost the representational power of networks [11]. There-

fore we divide the feature maps into different subspace and

infer different attention maps for each subspace in ULSAM,

which enables the multi-scale feature representation.

Multi-frequency feature representation: The natural

images composed of low frequency and high-frequency

components where the former entails slowly varying fea-

tures, and the latter represents the fine details in image [6].

Imparting unequal importance to high and low-frequency

features is an efficient way of representing features in fea-

ture maps [6, 8]. Following this, learning different im-

portance through different weights in different attention

maps for each feature subspace is an efficient way of

learning multi-frequency features. This way of learning

multi-frequency features is beneficial when there are high

intra-class variations present in image samples. Hence,

multi-frequency features leaning is more desirable for fine-

grained image classification where discriminative regions

have fine details, i.e., high-frequency features.

3.2. ULSAM

Let F ∈ Rm×h×w be the feature maps from an inter-

mediate convolution layer, where m is the number of input

channels, h, and w is the spatial dimensions of the feature

maps. Our objective is to learn to capture the cross-channel

inter-dependencies in the feature maps efficiently. As

shown in Figure 2, ULSAM divides the input feature maps

(F ) into g mutually exclusive groups [F1, F2, ....Fñ, ....Fg]
where each group have G feature maps. We define Fñ as a

group of intermediate feature maps and proceed as follows.

Añ = softmax(PW 1(maxpool3×3,1(DW 1×1(Fñ))))
(2)

F̂ñ = (Añ ⊗ Fñ)⊕ Fñ (3)

F̂ = concat([F̂1, F̂2, ....F̂ñ, ....F̂g]) (4)

In Eq. 2, maxpool3×3,1 is maxpool with kernel size =

3 × 3 and padding = 1, DW 1×1 is depthwise convolution

with 1× 1 kernel, PW 1 is pointwise convolution with only

one filter, and Añ is an attention map inferred from a group

of intermediate feature maps (Fñ). Attention map (Añ) in

each group (subspace) captures the non-linear dependencies

among the feature maps by learning to gather cross channel

information. To ensure
∑

i,j Añ(i, j) = 1, i.e. a valid atten-

tion weighting tensor, we employ a gating mechanism with

a softmax activation in Eq. 2. Each group of feature maps

gets the refined set of feature maps (F̂ñ) after the feature-

redistribution in Eq. 3 where ⊗ is element-wise multipli-

cation and ⊕ is element-wise addition. The final output of

ULSAM (F̂ ) is obtained by concatenating the feature maps

from each group (Eq. 4).

Similar to the squeeze operation in SE-Net [15], depth-

wise convolution followed by max pool operation, which

highlights the local informative regions [46], in Eq. 2 gath-

ers the spatial information. However, unlike the excitation

stage in SE-Net, we do not use parameter-heavy MLP to

captures the channel-wise inter-dependencies; instead, we

exploit the linear relationship between different feature map

subspace for integrating the cross-channel information. In
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effect, ULSAM learns to capture the complex interaction

of cross channel information with very few parameters and

computations. We analyze ULSAM by considering three

prominent cases.

Case 1: g = 1: In this case, there is only one group, i.e.,

the cross channel information for the whole feature volume

is captured by a single attention map. Intuitively, a single

attention map is not sufficient to capture the complex re-

lationships in the entire feature space and would result in

lower predictive performance.

Case 2 : 1 < g < m : Dividing the feature maps into

g groups implies that g attention maps will be generated.

Each attention map can capture the cross channel informa-

tion from the feature maps in its respective groups. We have

performed our experiments (Section 4) with various g (such

as g= 1,4,8,16) and have obtained performance improve-

ment with higher g (g = 4, 8, 16) on ImageNet (Table 6).

Case 3: g = m: Here, the attention map is generated for

each feature map in feature space. Hence, Eq. 2 can be

re-written as: Añ = softmax(α2 ⊗ (maxpool3×3,1(α1 ⊗
Fñ))). Here α1 and α2 are parameters for depthwise and

pointwise convolution. In each group, there is only one fea-

ture map (i.e., G = 1), and nothing is to be learned along

the channel dimension. Hence, the attention map will not be

able to capture the cross channel information, and the pro-

cess of generating attention maps reduces to a non-linear

transformation of the feature map itself.

Clearly, better interaction of cross-channel information

can be obtained when 1 < g < m and this intuition is con-

firmed by the results shown in Table 6. To keep the model

simple, we do not employ any intelligent policy for divid-

ing the feature maps into groups. Instead, we divide the

feature maps into groups such that G remains the same in

all the groups. We notice that dividing the feature maps into

groups does not incur any additional parameter or compu-

tation overhead while learning the cross-channel informa-

tion effectively. In other words, the storage and computa-

tional cost depends only on the number of channels (m) and

is independent of the number of groups (g) formed.

4. Experiments and Results

Datasets: We perform image classification on

ImageNet-1K [29] and fine-grained datasets, viz., Caltech-

UCSD Birds-200-2011 [40] (Birds for short) and Stanford

Dogs [17] (Dogs for short) datasets (Table 2). Fine-grained

classification is quite challenging due to substantial intra-

class variation. Similarly, Food-101 has noisy training

samples and high variations in local information. We report

validation accuracy (Top-1 and Top-5), an average of three

runs, for a single crop input image of size 224 × 224.

The accuracy reported on fine-grained image classification

datasets is obtained by training the models from scratch

(not on the ImageNet pre-trained model).

Experimental setup: We perform experiments using

PyTorch deep learning framework [26] with MobileNet-

V1 (MV1 for short) and MobileNet-V2 (MV2 for short) as

baseline architectures. To enable fair comparison, we re-

produce the results of baseline CNNs while applying the

same training configuration as in baseline + ULSAM. We

used four P100 GPUs for ImageNet-1K experiments and

two P100 GPUs for fine-grained image classification exper-

iments. We train MV1 and MV1+ULSAM with the batch

size of 128 and SGD optimizer with 0.9 momentum for 90

epochs in the case of ImageNet-1K and 150 epochs for fine-

grained image classification. The initial learning rate is 0.1,

and it reduces to 1

10
th after every 30 epochs. Similarly,

we train MV2 and MV2+ULSAM with batch size 98 and

SGD optimizer with 0.9 momentum and 4e-5 weight decay

for 400 epochs on ImageNet-1K and 200 epochs for fine-

grained image classification. The initial learning rate is set

to 0.045 and decays to 0.98× after every epoch.

Table 2. Datasets used in experiments

Dataset #Classes Size (train/test)
Inter-class

variations

Intra-class

variations

ImageNet-1K [29] 1000 1.28M/50K high low

Food-101 [2] 101 75,750/25,250 low high

Birds [40] 200 5,994/5,794 low high

Dogs [17] 120 22K low high

Where to insert ULSAM in CNNs? Deeper layers have

more semantic information and coarser spatial information

in feature maps [28]. Moreover, deeper layers are associ-

ated with global features and possess strong positional in-

formation [16]. Hence, applying self-attention in deeper

layers better learns the interaction of global information

as compared to applying attention in initial layers. Fur-

thermore, since the spatial size of feature maps is smaller

(as compared to the feature map size in initial layers), em-

ploying self-attention in deeper layers is computationally

cheaper than applying it in the initial layer s[28]. As shown

in Table 3, MV1 has a stack of 5 layers (layers 8-12) with

512 input and output feature maps. Similarly, MobileNet-

V2 (MV2) has residual bottleneck blocks from layers 2 to

18 and has different stacks of either 2 or 3 layers with the

same configuration (Table 5). These blocks, with repeated

layers with the same configuration, incurs very high com-

putation overhead due to a higher number of filters. For

example, layers 8 to 12 in MV1 cumulatively account for

46% of total FLOPs in MV1. Therefore, we insert ULSAM

between the layers and/or it substitutes the layers from the

aforementioned blocks to learn the cross-channel interac-

tions efficiently.

4.1. Results on ImageNet­1K

MV1 and MV2 with additional parameters/FLOPs:

We insert ULSAM in MV1 after layer 11, 12, and 13 which

is represented as 11:1, 12:1, and 13:1 in Table 6. The pa-
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Table 3. MV1 architecture
Layer no. (in, out, stride)

1 conv2d ( 3, 32, 2)

2,3 DWS ( 32, 64, 1), ( 64, 128, 2)

4,5 DWS ( 128, 128, 1), ( 128, 256, 2)

6,7 DWS ( 256, 256, 1), ( 256, 512, 2)

8-12 DWS 5× (512, 512, 1)
13, 14 DWS ( 512, 1024, 2), ( 1024, 1024, 1)

AvgPool, FC, softmax

Table 4. MobileNet-V1 layers 8 to 12 with ULSAM

Layer no. Layer type

8 DWS (512, 512, 1)

8:1 ULSAM

9 DWS (512, 512, 1)

9:1 ULSAM

10 DWS (512, 512, 1)

11 ULSAM

12 DWS (512, 512, 1)

Table 5. MV2 architecture
Layer no./type (in, out)

1 conv2d ( 3, 32)

2 residual block (32, 16)

3-4 residual block 2× (16, 24)
5 residual block ( 24, 32)

6-7 residual block 2× (32, 32)
8 residual block ( 32, 64)

9-11 residual block 3× (64, 64)
12 residual block ( 64, 96)

13-14 residual block 2× (96, 96)
15 residual block (96, 160)

16-17 residual block 2× (160, 160)
18 residual block (160, 320)

19 conv2d ( 320, 1280)

AvgPool

20 conv2d (1280, num classes)

Table 6. Image classification accuracy (%) of MV1/MV2 (with additional parameters/FLOPs) + ULSAM (g = 1,2,4,8,16) on ImageNet-1K.

Model Pos #Params #FLOPs
g = 1 g = 2 g = 4 g = 8 g = 16

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

1.0 MV1 (vanilla) – 4.2M 569M Top-1 = 70.65, Top-5 = 89.76

1.0 MV1 + ULSAM 11:1 4.2M 569.2M 70.69 89.85 70.84 89.87 70.77 89.91 70.59 89.83 70.89 89.74

1.0 MV1 + ULSAM 12:1 4.2M 569.2M 70.62 89.86 70.88 89.88 70.61 89.79 70.92 89.98 70.73 89.78

1.0 MV1 + ULSAM 13:1 4.2M 569.1M 70.63 89.60 70.85 89.97 70.86 89.85 70.74 89.81 70.82 90.05

MV2 (vanilla) – 3.4M 300M Top-1 = 71.25, Top-5 = 90.19

MV2 + ULSAM 17:1 3.4M 300.01M 71.31 90.28 71.39 90.34 71.64 90.27 71.35 90.36 71.42 90.43

rameter and FLOPs overhead incurs due to the insertion

of ULSAM at position 11:1, 12:1, and 13:1 is 1.02K and

0.2M/0.1M respectively. Top-1 accuracy on ImageNet-1K

has increased by 0.27% and 0.21% when position of UL-

SAM (g=4/8) is 12:1 and 13:1, respectively. Similarly, the

accuracy of MV2 is increased by 0.39% when ULSAM is

inserted after layer 17 (Table 5) and incurs only 0.32K and

0.015M additional parameters and FLOPs respectively (Ta-

ble 6).

Key observations: For every position of ULSAM, the

performance of MV1/MV2 is higher when g ≥ 4. Specif-

ically, there is a significant gain in the performance of

MV1/MV2 when g is increased beyond one. This indicates

that separate attention maps for the different parts of ofmaps

help in better feature representation.

MV1 and MV2 with fewer parameters/FLOPs: As

shown in Table 3, MV1 layers 8 to 12 have the same config-

uration and they account for 46% of total FLOPs. We use

ULSAM to optimize this part of the network by inserting

ULSAM after 8th and 9th layers and substitute 11th layer,

i.e. at position (8:1, 9:1, 11) shown in Table 4. Compared to

baseline network, we achieved a substantial reduction 52M

and 0.3M in FLOPs and parameters (respectively) with a

0.22% drop in top-1 accuracy on ImageNet-1K (Table 7).

We further perform experiments on scaled version of

Table 7. Image classification accuracy (%) of MV1 (with fewer

parameters and FLOPs) + ULSAM on ImageNet-1K.
Models Pos #Params #FLOPs Top-1 Top-5

1.0 MV1 (vanilla) – 4.2M 569M 70.65 89.76

1.0 MV1 + ULSAM (g = 1) (8:1, 9:1, 11) 3.9M 517M 69.92 89.25

1.0 MV1 + ULSAM (g = 2) (8:1, 9:1, 11) 3.9M 517M 70.14 89.67

1.0 MV1 + ULSAM (g = 4) (8:1, 9:1, 11) 3.9M 517M 70.43 89.92

1.0 MV1 + ULSAM (g = 8) (8:1, 9:1, 11) 3.9M 517M 70.29 89.96

1.0 MV1 + ULSAM (g = 16) (8:1, 9:1, 11) 3.9M 517M 70.04 89.98

0.75 MV1 (vanilla) – 2.6M 325M 67.48 88.00

0.75 MV1 + ULSAM (g = 1) (8:1, 9:1, 11) 2.4M 296M 67.98 88.06

0.75 MV1 + ULSAM (g = 4) (8:1, 9:1, 11) 2.4M 296M 67.81 88.43

0.50 MV1 (vanilla) – 1.3M 149M 63.22 84.63

0.50 MV1 + ULSAM (g = 1) (8:1, 9:1, 11) 1.2M 136M 63.42 84.70

0.50 MV1 + ULSAM (g = 4) (8:1, 9:1, 11) 1.2M 136M 63.25 84.81

Table 8. Image classification accuracy (%) of MV2 (with fewer

parameters and FLOPs) + ULSAM on ImageNet-1K.
Models Pos #Params #FLOPs Top-1 Top-5

MV2 (Vanilla) – 3.4M 300M 71.25 90.19

MV2 + ULSAM (g = 4) (14, 17) 2.96M 261.88M 71.52 90.25

MV2 + ULSAM(g = 4) (16, 17) 2.77M 269.07M 70.74 89.15

MV2 + ULSAM (g = 4) (13, 14, 16, 17) 2.54M 223.77M 69.72 87.79

MV1 where the number of filters in each layer is scaled

down by a factor of α (where α ∈ {0.5, 0.75}). The position

of ULSAM is same i.e., (8:1, 9:1, 11) as employed in 1.0-

MV1+ULSAM. Since performance of MV1 with ULSAM

is highest for g=4 (Table 7), we perform our experiments

with only g = 1 and g = 4 for scaled MV1. Table 7 shows the
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Table 9. Image classification accuracy (%) of MV1 (with fewer parameters/FLOPs) + ULSAM (g = 1,4,8,16) on fine-grained datasets.

Models Pos #Params #FLOPs
Food-101 Birds Dogs

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

MV1 (vanilla) - 4.2M 569M 81.31 95.24 62.88 86.05 62.20 89.66

MV1 + ULSAM (g = 1) (8:1, 9:1, 11) 3.9M 517M 81.28 95.50 62.46 86.01 62.73 88.80

MV1 + ULSAM (g = 4) (8:1, 9:1, 11) 3.9M 517M 81.30 95.37 63.52 85.80 63.06 89.58

MV1 + ULSAM (g = 8) (8:1, 9:1, 11) 3.9M 517M 81.19 95.41 64.44 86.60 63.30 89.68

MV1 + ULSAM (g = 16) (8:1, 9:1, 11) 3.9M 517M 81.62 95.33 63.47 84.90 62.75 89.35

Table 10. Image classification accuracy (%) of MV2 (with fewer parameters/FLOPs) + ULSAM (g = 1,4,8,16) on Food-101 dataset.

Model Positions #Params #FLOPs
g = 1 g = 4 g = 8 g = 16

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

MV2 (vanilla) – 3.4M 300M Top-1 = 81.51, Top-5 = 95.24

MV2 + ULSAM 13 3.28M 277.34M 81.67 95.82 81.71 95.47 81.76 95.51 81.94 95.63

MV2 + ULSAM 16 3.08M 284.54M 82.05 95.56 82.02 95.48 81.74 95.40 81.54 95.14

MV2 + ULSAM (9,13) 3.23M 267.06M 81.66 95.36 81.72 95.48 81.88 95.69 81.57 95.30

MV2 + ULSAM (16,17) 2.77M 269.08M 82.62 95.76 82.40 95.70 82.83 95.81 83.02 95.87

MV2 + ULSAM (14,17) 2.97M 261.88M 81.57 95.44 81.69 95.36 82.13 95.42 81.84 95.40

MV2 + ULSAM (13,14,16,17) 2.54M 224.16M 82.38 95.76 82.31 95.80 82.59 95.82 82.91 95.77

results. Interestingly, scaled MV1+ULSAM (with both g=1

and g=4) achieved higher Top-1 accuracy on ImageNet-1K

with significantly reduced parameters and FLOPs compared

to their baseline. More precisely, the top-1 accuracy of

0.75-MV1+ULSAM(g=1) is improved by 0.5% with 9.1%

and 5.8% fewer FLOPs and parameters while that of 0.50-

MV1+ULSAM(g=1) is improved by 0.10% with 8.92% and

7.69% fewer FLOPs and parameters, respectively.

Similarly, when ULSAM substituted with residual block

14 and 17 in MV2 (Table 5) the top-1 accuracy of MV2 is

improved by 0.27% while having 431.6K and 38.2M fewer

parameters and FLOPs (Table 8). On substituting layers

13, 14, 16, and 17 with ULSAM, we achieved 25.28% and

25.27% reduction in FLOPs and parameter count, respec-

tively, and the top-1 accuracy is reduced to 69.72%. Thus,

ULSAM either retains or improves accuracy while bring-

ing a significant reduction in the number of parameters and

FLOPs.

Key observations:

• Unlike MV1, the performance of scaled-MV1 and

MV2 is increased with fewer parameters and FLOPs as

compared to their baseline networks. This implies that

ULSAM exploits spatial and channel redundancy in a

batter when the network is more compact. That is, UL-

SAM captures better inter-class variation through the

interaction of cross-channel information when channel

redundancy is low.

• With increasing g, there is a diminishing return in the

accuracy of MV1+ULSAM (Table 7) because increas-

ing g reduces the value of G in each group and inhibits

the cross-channel information exchange. Also, the top-

1 accuracy (70.43%) of MV1+ULSAM on ImageNet-

1k is lower. However, the top-5 accuracy is higher than

that of the baseline (except with g = 1). This implies

that the misclassification, which leads to lower top-1

accuracy, is correctly predicted in top-5 predictions by

the MV1+ULSAM.

• For both 0.75-MV1+ULSAM and 0.50-

MV1+ULSAM, the highest top-1 accuracy is

achieved with g = 1 instead of the g = 4. Since the

scaled versions of MV1 already have fewer feature

maps per layer, further dividing the feature maps

into groups reduces G (as happened with g = 4) and

hence, reduces the information present in each group

and degrades accuracy. The top-5 accuracy is highest

at g = 4.

4.2. Results on Fine­grained Image Classification
Datasets

We perform our experiments on three fine-grained

datasets (Table2) with g=1, 4, 8, and 16.

MobileNet-V1 + ULSAM: The Results for MV1+ULSAM

on fine-grained datasets are shown in Table 9. The top-1

accuracy of MV1+ULSAM is improved by 0.31% on Food-

101 with g=16, 1.56% on Birds dataset with g=8, and 1.10%

with g=8 with 9.14% and 7.14% reduction in FLOPs and

parameters compared to baseline networks. The highest

top-1 accuracy on Birds and Dogs dataset is achieved with

g = 8 whereas that on Food-101 is achieved with g = 16

(Table 7). Thus, at higher value of g, ULSAM captures the

intra-class variation more effectively.

MobileNet-V2 + ULSAM: The experimental results on

Food-101, Birds and Dogs datasets are shown in Table 10,

Table 11, and Table 12 respectively. The performance of

MV2 has significantly improved with a substantial reduc-

tion in parameter and FLOPs counts. For example, at posi-
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Table 11. Image classification accuracy (%) of MV2 (with fewer parameters/FLOPs) + ULSAM (g = 1,4,8,16) on Birds dataset.

Model Positions #Params #FLOPs
g = 1 g = 4 g = 8 g = 16

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

MV2 (vanilla) – 3.4M 300M Top-1 = 62.94, Top-5 = 84.92

MV2 + ULSAM 13 3.28M 277.34M 63.01 85.17 63.05 83.48 63.11 84.79 64.32 84.62

MV2 + ULSAM 16 3.08M 284.54M 63.98 86.22 64.44 84.87 65.03 85.63 63.47 84.45

MV2 + ULSAM (9,13) 3.23M 267.06M 63.43 85.55 63.47 84.41 63.10 84.96 62.21 84.62

MV2 + ULSAM (16,17) 2.77M 269.08M 64.19 85.46 64.57 84.92 64.61 85.25 65.03 85.64

MV2 + ULSAM (14,17) 2.97M 261.88M 63.35 85.29 64.70 86.98 65.41 86.01 63.31 84.92

MV2 + ULSAM (13,14,16,17) 2.54M 224.16M 64.11 86.77 64.15 84.92 63.22 85.21 63.98 85.12

Table 12. Image classification accuracy (%) of MV2 (with fewer parameters/FLOPs) + ULSAM (g = 1,4,8,16) on Dogs dataset.

Model Pos #Params #FLOPs
g = 1 g = 4 g = 8 g = 16

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

MV2 (vanilla) – 3.4M 300M Top-1 = 61.81, Top-5 = 86.88

MV2 + ULSAM 13 3.28M 277.34M 61.63 86.58 61.80 86.68 62.05 87.30 60.31 86.63

MV2 + ULSAM 16 3.08M 284.54M 62.60 88.20 62.90 87.30 63.01 88.00 61.70 87.40

MV2 + ULSAM (9, 13) 3.23M 267.06M 61.73 87.08 61.73 86.86 62.66 87.86 62.08 88.11

MV2 + ULSAM (16, 17) 2.77M 269.08M 63.28 88.86 64.30 89.58 64.10 88.58 62.48 88.41

MV2 + ULSAM (14, 17) 2.97M 261.88M 62.86 87.88 62.50 88.03 64.33 89.31 61.67 87.18

MV2 + ULSAM (13, 14, 16, 17) 2.54M 224.16M 63.20 88.84 63.53 88.63 62.75 88.18 62.50 88.56

tion (13,14,16,17) the top-1 accuracy of MV2 is improved

by 1.4% on Food-101 (with g=16), 1.21% on Birds dataset

(with g=4), and 1.72% on Dogs dataset (with g=4) while

incurring 25.28% and 25.27% reduction in FLOPs and pa-

rameter count, respectively. On all positions of ULSAM,

the performance is improved compared to baseline model.

Key Observations: Almost all experiments on fine-grain

datasets with different positions of ULSAM perform better

than vanilla with significantly lower computations and pa-

rameters. This substantiates that applying different weights

(through different attention maps) for feature maps with

different frequency components boost the representational

power significantly on fine-grained datasets.

4.3. Attention visualization

We now show the effectiveness of our approach through

human-interpretable visual explanation. We apply the

Grad-Cam++ tool [3, 31] on MV1 and MV2 using images

from the Birds dataset. Grad-Cam++ provides complete

heatmaps of the object, and the masked regions in the im-

ages are important (considered by the networks) for predict-

ing the class. Figure 3 shows the visualization results with

vanilla MV1 and MV2 and their ULSAM integrated ver-

sions. Evidently, ULSAM integrated versions of MobileNet

focuses the target images better than the baseline networks,

which better explain the effectiveness of ULSAM.

5. Conclusion

We proposed an ultra-lightweight attention block (UL-

SAM), which divides the feature maps into multiple sub-

spaces to capture the inter-dependencies. The lower param-

eter and computation overhead of ULSAM, compared to the

Input image MV1 MV1+ULSAM MV2 MV2+ULSAM

Figure 3. Grad-CAM++ visualization results. Here the input im-

ages are Painted bunting, Hooded Oriole, Scarlet Tanager, and Bo-

hemian Waxwing (in order).

state-of-the-art attention mechanism, make it desirable for

compact CNNs. Our future work will focus on incorporat-

ing spatial attention and capturing complex global relations

in the entire feature space of CNNs.
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